
Oracle® Scripting
Developer’s Guide

Release 11i

Part No. B10057-02

April 2003

Oracle Scripting Developer’s Guide, Release 11i

Part No. B10057-02

Copyright © 2002, 2003 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark of Oracle Corporation. Other names may be trademarks of their
respective owners.

Oracle is a registered trademark, and Oracle 8i, OracleMetaLink, Oracle Store, PL/SQL, and SQL*Plus are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

Contents

Send Us Your Comments .. vii

Preface.. ix

Audience for This Guide .. ix
How To Use This Guide ... ix
Other Information Sources ... xi
Do Not Use Database Tools to Modify Oracle Applications Data ... xvi
About Oracle ... xvii

1 Understanding Script Author Commands

1.1 Action Types and Commands ... 1-1
1.1.1 Where Commands Are Defined in the Script Author .. 1-1
1.1.2 Action Types ... 1-2
1.2 Command Types ... 1-5
1.2.1 Java Commands.. 1-5
1.2.1.1 Referencing Java Methods in Script Author ... 1-6
1.2.1.2 Referencing Best Practice Java Methods in Script Author 1-7
1.2.1.3 Passing the Proxy Bean as a Parameter to a Java Command 1-9
1.2.1.4 Standard Java Naming and Usage Conventions.. 1-10
1.2.1.5 Importing Scripting Classes into Java Source Files.. 1-11
1.2.2 PL/SQL Commands .. 1-12
1.2.3 Blackboard Commands ... 1-13
1.2.3.1 Providing Values to the Blackboard... 1-14
1.2.3.2 Uses of the Blackboard Command ... 1-15
 iii

1.2.3.3 Maintaining State in the Scripting Blackboard ... 1-15
1.2.3.4 How Long Is Blackboard Information Retained?... 1-16
1.2.3.5 Using Scripting APIs... 1-16
1.2.4 Forms Commands ... 1-17
1.2.4.1 Oracle Scripting Forms APIs ... 1-20
1.2.4.2 Getting a Value from Forms-Based Oracle applications 1-22
1.2.4.3 Setting a Value in Forms-Based Applications... 1-27
1.2.4.4 Defining a Shortcut Button to Launch a Form.. 1-29
1.2.4.5 Launching a Web Browser as a Script Action... 1-32
1.2.4.6 Calling APIs Customized for Use with Oracle Scripting 1-34
1.2.4.6.1 Oracle TeleService.. 1-35
1.2.4.6.2 Oracle TeleSales and Oracle Collections .. 1-39
1.2.5 Constant Commands ... 1-39
1.2.6 Delete Actions ... 1-40

2 Customizing Oracle Scripting

2.1 Customization and Support... 2-1
2.1.1 Formal and Informal Training.. 2-2
2.1.2 Skill Sets and Experience Required for Oracle Scripting.. 2-2
2.1.3 Using Best Practices and Building Blocks... 2-6
2.2 Determining Where to Define a Command... 2-7
2.3 Best Practice Java Methods... 2-11
2.3.1 Overview of Best Practice Java Methods .. 2-11
2.3.2 Deciding Between Best Practice and Custom Java .. 2-13
2.3.3 ScriptUtil Java Methods... 2-15
2.3.4 NodeDefault Java Methods... 2-18
2.3.5 NodeValidation Java Methods ... 2-20
2.3.6 Referencing Best Practice Java in a Command .. 2-22
2.4 Passing Parameters to the Web Interface ... 2-24
2.5 Performing Advanced Graphical Script Tasks.. 2-25
2.5.1 Defining a Shortcut Button ... 2-26
2.5.1.1 Defining a Shortcut Button to Execute a Command.. 2-27
2.5.1.2 Defining a Shortcut Button to Jump to a Group... 2-28
2.5.2 Defining Shortcuts.. 2-32
2.5.3 Enabling the Agent Interface Disconnect Button... 2-33
iv

2.5.4 Enabling or Disabling a Shortcut Button .. 2-37
2.5.5 Defining the Script Information Area ... 2-39
2.5.6 Defining a Constant Command ... 2-42
2.5.7 Using the Indeterminate Branch .. 2-44
2.5.8 Using Iterating Parameters ... 2-48
2.5.8.1 Business Rules Governing Iterating Parameters .. 2-48
2.5.8.2 Iterating Parameters in the Scripting Engine.. 2-49
2.5.9 Querying the Database and Displaying the Results ... 2-49
2.5.9.1 Displaying Returned Values as Panel Text ... 2-50
2.5.9.2 Displaying Returned Values as Panel Answer Lookup Values 2-51
2.5.9.3 Understanding the Scripting Cursor.. 2-58
2.5.9.4 Scripting Engine Cursor APIs ... 2-59
2.5.10 Replacing a Panel with a Java Bean... 2-60

3 Seeded Script Author Commands

3.1 Support Statement... 3-2
3.2 Seeded Commands Overview ... 3-3
3.3 Seeded Command Detail.. 3-4
3.3.1 Create Lead ... 3-4
3.3.2 Create Lead Opportunity.. 3-8
3.3.3 Send Collateral.. 3-12
3.3.4 Register for an Event.. 3-14
3.3.5 Register Interest for Organization ... 3-17
3.3.6 Register Interest for Contact ... 3-20
3.3.7 Create Organization Contact .. 3-22
3.3.8 Create Party Org Type... 3-24
3.3.9 Create Party Site ... 3-26
3.3.10 Create Person Party ... 3-27
3.3.11 Create Location... 3-29
3.3.12 Update Organization Contact .. 3-31
3.3.13 Update Party Site ... 3-33

4 Oracle Scripting Building Blocks

4.1 Overview of Building Blocks ... 5-2
4.1.1 Building Blocks Versus Seeded Reusable Commands ... 5-2
v

4.1.2 General Structure of a Building Block Script.. 5-3
4.1.3 Location of Building Block Scripts... 5-4
4.2 How to Use Building Blocks .. 5-4
4.3 Summary Information on the Building Block Scripts .. 5-4
4.4 The Retrieve Customer Building Block Script (iesrcust.scr) ... 5-5

5 Best Practice Surveys

5.1 Best Practice Survey Script Considerations ... 4-1
5.2 Location of Best Practice Survey Scripts .. 4-2
5.3 Description of Best Practice Survey Scripts ... 4-2

6 Customizing Panel Layouts

6.1 Purpose and Limitations of the Panel Layout Editor... 6-2
6.2 HTML Restrictions in the Scripting Engine... 6-2
6.2.1 Restrictions for Web and Agent Interfaces ... 6-3
6.2.2 Web Interface Restrictions .. 6-3
6.2.3 Agent Interface Restrictions.. 6-5
6.3 Oracle Scripting Custom HTML Syntax .. 6-6
6.3.1 Panel-Level HTML Requirements and Syntax... 6-7
6.3.2 Answer UI-Level HTML Requirements and Syntax ... 6-10
6.3.2.1 Radio Button Answer UI Panel Syntax .. 6-10
6.3.2.2 Checkbox Group Answer UI Panel Syntax ... 6-11
6.3.2.3 Button Answer UI Panel Syntax ... 6-13
6.3.2.4 Continue Button Panel Syntax .. 6-14
6.3.2.5 Embedded Value Syntax in Panel Text.. 6-14
6.4 Procedures for Customizing Panel Layouts .. 6-15
6.4.1 Requirements for Answer Lookup Values ... 6-15
6.4.2 Requirements for Panel Content .. 6-16
6.4.3 Writing Panel Text Outside of the Script Author .. 6-17
6.4.4 Exporting Panel Text, Adding JavaScript, and Importing 6-19

Oracle Scripting Glossary
vi

vii

Send Us Your Comments

Oracle Scripting Developer’s Guide, Release 11i

Part No. B10057-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Postal service:
Oracle Corporation
Oracle Scripting Documentation
1900 Oracle Way
Reston, Virginia 20190
U.S.A.

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.

viii

ix

Preface

Audience for This Guide
Welcome to Release 11i of the Oracle Scripting Developer’s Guide.

This guide assumes you have a working knowledge of the following:

■ The principles and customary practices of your business area.

■ Oracle Scripting

This document is for advanced users of Oracle Scripting. If you have never used
Oracle Scripting, Oracle Corporation suggests you attend one or more of the
Oracle Scripting training classes available through Oracle University.

■ The Oracle Applications graphical user interface, navigation of the Oracle
Applications file system, administration of Oracle Applications, and
administration of Apache Web server software configurations in support of
Oracle Applications administration.

To learn more about Oracle Applications graphical user interface,
administration, and so forth, read the Oracle Applications User’s Guide.

See Other Information Sources for more information about Oracle Applications
product information.

How To Use This Guide
This guide contains guidance to help you create, modify, customize, and deploy
Script Author scripts to the Oracle applications database. Information regarding the
supporting technologies for complex script functionality is also addressed in this
document.

x

■ Understanding Script Author Commands describes in detail the command
types available to Script Author and guidelines on where, when, and how to
use each command type in a script.

■ Customizing Oracle Scripting explains the level of supportability of
customized scripts, and details various methods to customize Script Author
scripts using advanced features to add frequently requested script functionality.
Step-by-step procedures to accomplish typical customization tasks in graphical
scripts are provided in this section.

■ Seeded Script Author Commands details the reusable commands seeded in
Oracle Applications for use in the Scripting Engine, and provides detail on the
requirements for each command, including a description of each command and
its parameters and blackboard key names.

■ Oracle Scripting Building Blocks provides an overview of building block
scripts and how to use them, provides a summary of each building block script,
and explains the Retrieve Customer functionality used in most of the building
blocks.

■ Best Practice Surveys describes considerations for using best practice survey
scripts, details where to download the scripts, and lists each best practice
survey script and a description of its function prior to customization.

■ Customizing Panel Layouts describes use and limitations of the panel layout
editor feature for customizing graphical scripts, details custom HTML
restrictions, documents Oracle Scripting custom HTML tags, and provides
procedures for customizing graphical script panel layouts. This section details
differences in the two Scripting Engine user interfaces and highlights
recommendations to avoid pitfalls in creating custom scripts.

■ Oracle Scripting Glossary describes many terms used in this document.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

http://www.oracle.com/accessibility/

xi

Accessibility of Code Examples in Documentation
JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle Corporation does not own or control. Oracle Corporation
neither evaluates nor makes any representations regarding the accessibility of these
Web sites.

Other Information Sources
You can choose from many sources of information, including online documentation,
training, and support services, to increase your knowledge and understanding of
Oracle Scripting.

If this guide refers you to other Oracle Applications documentation, use only the
Release 11i versions of those guides.

Online Documentation
All Oracle Applications documentation is available online (HTML or PDF). Some
online help patches are available on OracleMetaLink. Oracle Scripting online help is
only available with installation of Oracle Scripting release 11.5.6 or later.

Related Documentation
Oracle Scripting shares business and setup information with other Oracle
Applications products. Therefore, you may want to refer to other product
documentation when you set up and use Oracle Scripting.

You can read the documents online by choosing Library from the expandable menu
on your HTML help window, by reading from the Oracle Applications Document
Library CD included in your media pack, or by using a Web browser with a URL
that your system administrator provides.

If you require printed guides, you can purchase them from the Oracle Store at
http://oraclestore.oracle.com.

http://oraclestore.oracle.com

xii

Documents Related to All Products

Oracle Applications User’s Guide
This guide explains how to enter data, query, run reports, and navigate using the
graphical user interface (GUI) available with this release of Oracle Scripting (and
any other Oracle Applications products). This guide also includes information on
setting user profiles, as well as running and reviewing reports and concurrent
processes.

You can access this user’s guide online by choosing "Getting Started with Oracle
Applications" from any Oracle Applications help file.

Documents Related to This Product

Oracle Scripting Implementation Guide 11i

This guide describes how to implement Oracle Scripting components, how to
administer Oracle Scripting, and how to test an implementation appropriately.

Oracle Scripting User Guide 11i

This guide describes how to use Oracle Scripting components and describes many
concepts and procedures regarding understanding, using, and planning for Oracle
Scripting in your enterprise.

Installation and System Administration

Oracle Applications Concepts
This guide provides an introduction to the concepts, features, technology stack,
architecture, and terminology for Oracle Applications Release 11i. It provides a
useful first book to read before an installation of Oracle Applications. This guide
also introduces the concepts behind Applications-wide features such as Business
Intelligence (BIS), languages and character sets, and Self-Service Web Applications.

Installing Oracle Applications
This guide provides instructions for managing the installation of Oracle
Applications products. In Release 11i, much of the installation process is handled
using Oracle Rapid Install, which minimizes the time to install Oracle Applications,
the Oracle8 technology stack, and the Oracle8i Server technology stack by
automating many of the required steps. This guide contains instructions for using
Oracle Rapid Install and lists the tasks you need to perform to finish your

xiii

installation. You should use this guide in conjunction with individual product
user’s guides and implementation guides.

Oracle Applications Supplemental CRM Installation Steps
This guide contains specific steps needed to complete installation of a few of the
CRM products. The steps should be done immediately following that tasks given in
the Installing Oracle Applications guide.

Upgrading Oracle Applications
Refer to this guide if you are upgrading your Oracle Applications Release 10.7 or
Release 11.0 products to Release 11i. This guide describes the upgrade process and
lists database and product-specific upgrade tasks. You must be either at Release 10.7
(NCA, SmartClient, or character mode) or Release 11.0, to upgrade to Release 11i.
You cannot upgrade to Release 11i directly from releases prior to 10.7.

Maintaining Oracle Applications
Use this guide to help you run the various AD utilities, such as AutoUpgrade,
AutoPatch, AD Administration, AD Controller, AD Relink, License Manager, and
others. It contains how-to steps, screenshots, and other information that you need to
run the AD utilities. This guide also provides information on maintaining the
Oracle applications file system and database.

Oracle Applications System Administrator’s Guide
This guide provides planning and reference information for the Oracle Applications
System Administrator. It contains information on how to define security, customize
menus and online help, and manage concurrent processing.

Oracle Alert User’s Guide
This guide explains how to define periodic and event alerts to monitor the status of
your Oracle Applications data.

Oracle Applications Developer’s Guide
This guide contains the coding standards followed by the Oracle Applications
development staff. It describes the Oracle Application Object Library components
needed to implement the Oracle Applications user interface described in the Oracle
Applications User Interface Standards for Forms-Based Products. It also provides
information to help you build your custom Oracle Forms Developer 6i forms so that
they integrate with Oracle Applications.

xiv

Oracle Applications User Interface Standards for Forms-Based Products
This guide contains the user interface (UI) standards followed by the Oracle
Applications development staff. It describes the UI for the Oracle Applications
products and how to apply this UI to the design of an application built by using
Oracle Forms.

Other Implementation Documentation

Multiple Reporting Currencies in Oracle Applications
If you use the Multiple Reporting Currencies feature to record transactions in more
than one currency, use this manual before implementing Oracle Scripting. This
manual details additional steps and setup considerations for implementing Oracle
Scripting with this feature.

Multiple Organizations in Oracle Applications
This guide describes how to set up and use Oracle Scripting with Oracle
Applications' Multiple Organization support feature, so you can define and support
different organization structures when running a single installation of Oracle
Scripting.

Oracle Workflow Guide
This guide explains how to define new workflow business processes as well as
customize existing Oracle Applications-embedded workflow processes.You also use
this guide to complete the setup steps necessary for any Oracle Applications
product that includes workflow-enabled processes.

Oracle Applications Flexfields Guide
This guide provides flexfields planning, setup and reference information for the
Oracle Scripting implementation team, as well as for users responsible for the
ongoing maintenance of Oracle Applications product data. This manual also
provides information on creating custom reports on flexfields data.

Oracle eTechnical Reference Manuals
Each eTechnical Reference Manual (eTRM) contains database diagrams and a
detailed description of database tables, forms, reports, and programs for a specific
Oracle Applications product. This information helps you convert data from your
existing applications, integrate Oracle Applications data with non-Oracle
applications, and write custom reports for Oracle Applications products. Oracle
eTRM is available on OracleMetaLink

xv

Oracle Manufacturing APIs and Open Interfaces Manual
This manual contains up-to-date information about integrating with other Oracle
Manufacturing applications and with your other systems. This documentation
includes APIs and open interfaces found in Oracle Manufacturing.

Oracle Order Management Suite APIs and Open Interfaces Manual
This manual contains up-to-date information about integrating with other Oracle
Manufacturing applications and with your other systems. This documentation
includes APIs and open interfaces found in Oracle Order Management Suite.

Oracle Applications Message Reference Manual
This manual describes Oracle Applications messages. This manual is available in
HTML format on the documentation CD-ROM for Release 11i.

Oracle CRM Common Application Components Implementation Guide
Many CRM products use components from CRM Common Application
Components (formerly referred to as the CRM Application Foundation). Use this
guide to correctly implement CRM Common Application Components.

Training and Support

Training
Oracle offers training courses to help you and your staff master Oracle Scripting
and reach full productivity quickly. You have a choice of educational environments.
You can attend courses offered by Oracle University at any one of our many
Education Centers, you can arrange for our trainers to teach at your facility, or you
can use Oracle Learning Network (OLN), Oracle University's online education
utility. In addition, Oracle training professionals can tailor standard courses or
develop custom courses to meet your needs. For example, you may want to use
your organization structure, terminology, and data as examples in a customized
training session delivered at your own facility.

Support
From on-site support to central support, our team of experienced professionals
provides the help and information you need to keep Oracle Scripting working for
you. This team includes your Technical Representative, Account Manager, and
Oracle’s large staff of consultants and support specialists with expertise in your
business area, managing an Oracle8i server, and your hardware and software
environment.

xvi

OracleMetaLink
OracleMetaLink is your self-service support connection with web, telephone menu,
and e-mail alternatives. Oracle supplies these technologies for your convenience,
available 24 hours a day, 7 days a week. With OracleMetaLink, you can obtain
information and advice from technical libraries and forums, download patches,
download the latest documentation, look at bug details, and create or update TARs.
To use OracleMetaLink, register at (http://metalink.oracle.com).

Alerts: You should check OracleMetaLink alerts before you begin to install or
upgrade any of your Oracle Applications. Navigate to the Alerts page as follows:
Technical Libraries/ERP Applications/Applications Installation and
Upgrade/Alerts.

Self-Service Toolkit: You may also find information by navigating to the
Self-Service Toolkit page as follows: Technical Libraries/ERP
Applications/Applications Installation and Upgrade.

Do Not Use Database Tools to Modify Oracle Applications Data
Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data
Browser, database triggers, or any other tool to modify Oracle Applications data
unless otherwise instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as
SQL*Plus to modify Oracle Applications data, you risk destroying the integrity of
your data and you lose the ability to audit changes to your data.

Because Oracle Applications tables are interrelated, any change you make using
Oracle Applications can update many tables at once. But when you modify Oracle
Applications data using anything other than Oracle Applications, you may change a
row in one table without making corresponding changes in related tables. If your
tables get out of synchronization with each other, you risk retrieving erroneous
information and you risk unpredictable results throughout Oracle Applications.

When you use Oracle Applications to modify your data, Oracle Applications
automatically checks that your changes are valid. Oracle Applications also keeps
track of who changes information. If you enter information into database tables
using database tools, you may store invalid information. You also lose the ability to
track who has changed your information because SQL*Plus and other database
tools do not keep a record of changes.

http://metalink.oracle.com

xvii

About Oracle
Oracle Corporation develops and markets an integrated line of software products
for database management, applications development, decision support, and office
automation, as well as Oracle Applications, an integrated suite of more than 160
software modules for financial management, supply chain management,
manufacturing, project systems, human resources and customer relationship
management.

Oracle products are available for mainframes, minicomputers, personal computers,
network computers and personal digital assistants, allowing organizations to
integrate different computers, different operating systems, different networks, and
even different database management systems, into a single, unified computing and
information resource.

Oracle is the world’s leading supplier of software for information management, and
the world’s second largest software company. Oracle offers its database, tools, and
applications products, along with related consulting, education, and support
services, in over 145 countries around the world.

xviii

Understanding Script Author Commands 1-1

1
Understanding Script Author Commands

You can add functionality to a graphical script at runtime by defining commands in
the Script Author.

This section includes the following topics:

Section 1.1, "Action Types and Commands"

Section 1.2, "Command Types"

1.1 Action Types and Commands
This section includes the following topics:

Section 1.1.1, "Where Commands Are Defined in the Script Author"

Section 1.1.2, "Action Types"

1.1.1 Where Commands Are Defined in the Script Author
Commands can be defined for a graphical script in the Script Author in the
following ways:

■ Associated with Script Author objects using various action types

■ Associated with "questions" (also referred to as answer definitions) using the
data dictionary

■ Associated with panel text using an embedded value

■ Associated with a Shortcut button in the Shortcut button bar (for agent interface
operations only)

■ Associated as the return value or parameter of another command

Action Types and Commands

1-2 Oracle Scripting Developer’s Guide

Commands can also be defined for a wizard script by selecting options in the Define
Question Detail wizard window. All commands are associated at the question
within a panel level. Commands available from the wizard script include the
following:

■ Constant command (referred to as the "Default Value" the question)

■ Validation that an answer is provided at runtime (for example, was any input
provided by the user)

■ Validation for an integer provided as an answer at runtime (validation includes
verifying that the answer provided is an integer only, or is an integer within a
provided range, or is a valid date, or is a valid date not in the past)

1.1.2 Action Types
Action types provide a way to associate a Script Author command with a graphical
object in the script (a panel, group, block, branch, or the global script itself).
Commands are associated with Script Author graphical objects using various action
types, based on the object.

Using an action type, you can associate an existing command from the command
library, or create a new command. Action types include actions, delete actions,
pre-actions, post-actions, and application programming interface (API) actions.

Actions execute at runtime when the object is reached. Actions are properties of
branches only, and represent the only command occurring for the branch, other
than routing the script to the next object according to properties of the branch type.
Actions can include any command type except an API action.

Delete actions execute at runtime when the object containing the delete action is
reached. The delete action causes a row to be deleted from the database, based on
what is currently selected in the Scripting cursor. Nothing else in the script or
transaction is deleted.

Pre-actions execute at runtime when the object containing the pre-action is reached
and prior to:

■ Displaying any panel objects (text, graphics, or questions);

■ Collecting any answers, for a panel;

■ Executing any commands associated with the group or block and contained in
the object;

■ Displaying subgraphs contained in groups or blocks.

Action Types and Commands

Understanding Script Author Commands 1-3

Post-actions execute at runtime when the object containing the post-action is
reached, and after:

■ Answers are retrieved and written to the blackboard (for a panel), and prior to
reaching or processing the next object in the script;

■ Commands associated with a group or block and contained in the object are
executed, and prior to reaching or processing the next object in the script;

■ Subgraphs contained in groups or blocks are reached and processed by the
script, and prior to returning flow to the calling parent graph.

Delete actions execute at runtime when the object containing the delete action is
reached. The delete action causes a row to be deleted from the database, based on
what is currently selected in the Scripting cursor. Nothing else in the script or
transaction is deleted.

API actions are associated with blocks only and execute at runtime immediately
following the execution of any pre-actions to the API block, and prior to the display
of any panel content or execution of any objects contained within the API block.

The table below indicates which action types are associated with each object, and
describes when that command is executed for each object.

Object Action Type Description

Default branch Action Command executes at runtime upon reaching this branch
in the flow of the script.

Distinct branch Action Command executes at runtime upon reaching this branch
in the flow of the script.

Conditional
branch

Action Command executes at runtime upon reaching this branch
in the flow of the script.

Indeterminate
branch

Action Command executes at runtime upon reaching this branch
in the flow of the script.

Global script Pre-action Command executes at runtime prior to displaying any
objects in the user interface or evaluating any commands
associated with objects in the script.

 Global script Post-action Command executes at runtime immediately following the
display of the last panel or object reached in the flow and
prior to ending the interaction.

Panel Pre-action Command executes at runtime prior to displaying any
panel content or answers contained in the panel.

Action Types and Commands

1-4 Oracle Scripting Developer’s Guide

Guidelines
■ Actions can be performed on branches anywhere in a script, except between the

Start node and the first object in the script.

■ Delete actions can be included in a script as an action to a branch, or as a
pre-action or post-action to any other object in a script.

■ Pre-actions and post-actions can be performed on panels, blocks, groups, or the
global script.

■ API actions can be associated with a block of type API block.

References
For more information, see the Defining Commands section in Oracle Scripting User
Guide Release 11i.

See Also
Section 2.3, "Best Practice Java Methods"

 Panel Post-action Command executes at runtime immediately following
action by the user to continue to the next panel in the flow,
and prior to evaluation of the next object.

Group Pre-action Command executes at runtime prior to display of any panel
content or execution of any object contained in the group.
This is true even if reaching the group via a shortcut.

 Group Post-action Command executes at runtime immediately following the
display of any panel content or execution of any object
contained in the group. and prior to evaluation of the next
object in the flow of the script.

Block Pre-action Command executes at runtime prior to display of any panel
content or execution of any database or API actions
contained within the block.

 Block Post-action Command executes at runtime immediately following the
display of any panel content or execution of any database
or API actions, and prior to evaluation of the next object in
the flow of the script.

 Block API action Command executes at runtime immediately following the
execution of any pre-actions to the API block, and prior to
the display of any panel content or execution of any objects
contained within the API block.

Object Action Type Description

Command Types

Understanding Script Author Commands 1-5

1.2 Command Types
You can create the following types of commands for a graphical script in Script
Author:

Section 1.2.1, "Java Commands"

Section 1.2.2, "PL/SQL Commands"

Section 1.2.3, "Blackboard Commands"

Section 1.2.4, "Forms Commands"

Section 1.2.5, "Constant Commands"

Section 1.2.6, "Delete Actions"

1.2.1 Java Commands
Using a Java command, you can execute any public method in an appropriately
referenced Java class. The Java command is executed when the appropriate object is
reached in the flow of the script at runtime.

Guidelines
■ Commands are associated with objects using several approaches. For more

information on where Java or other commands can be placed into a script, see
Section 1.1.1, "Where Commands Are Defined in the Script Author".

■ You can reference existing best practice Java methods (see Section 2.3, "Best
Practice Java Methods"), or create custom Java methods.

■ Java commands that invoke Oracle Scripting APIs require the server proxy bean
as a parameter. Check the requirements of a specific API.

■ No provision is made to create or compile custom Java methods in the Script
Author. All custom Java must be created by certified, trained and
knowledgeable individuals using external applications or utilities.

■ The Java class you reference must have the appropriate import statements to
access Oracle Scripting-specific classes. For more information, see
Section 1.2.1.5, "Importing Scripting Classes into Java Source Files".

■ The method within the Java class that you reference in the Script Author must
be fully qualified. For more information, see Section 1.2.1.1, "Referencing Java
Methods in Script Author".

Command Types

1-6 Oracle Scripting Developer’s Guide

■ For Java commands to execute as intended, the referenced Java class and
method must be appropriately compiled, packaged, and available to the class
loader of the Java Virtual Machine (JVM) in the Scripting session where it will
be executed.

■ You can deploy custom Java archives to the applications database using the
Scripting Administration console, where the code archive can be made globally
available to all scripts, or mapped to one or more specific scripts, resulting in
the referenced methods being available at script runtime.

■ For specific instructions on defining a Java command in the Script Author, see
Invoking a Public Method in a Java Class in Oracle Scripting User Guide Release
11i.

This section includes the following topics:

Section 1.2.1.1, "Referencing Java Methods in Script Author"

Section 1.2.1.2, "Referencing Best Practice Java Methods in Script Author"

Section 1.2.1.4, "Standard Java Naming and Usage Conventions"

Section 1.2.1.5, "Importing Scripting Classes into Java Source Files"

See Also
Section 1.2.2, "PL/SQL Commands"

Section 1.2.3, "Blackboard Commands"

Section 1.2.4, "Forms Commands"

Section 1.2.5, "Constant Commands"

Section 1.2.6, "Delete Actions"

1.2.1.1 Referencing Java Methods in Script Author

Java Class Path Specification
To specify a Java command in the Script Author, you must enter appropriate values
in the Command Info area of the Command Properties window:

■ In the Name field, enter the command name.

This is the name Oracle Scripting uses to reference this command. If stored in
the database as a reusable command, this is the name that identifies this specific
Script Author command.

Command Types

Understanding Script Author Commands 1-7

■ In the Command field, enter the command path.

This is a string that includes the Java class name for the command (including
the fully qualified class path), followed by two colons, and the specific Java
method of the class.

Fully Qualified Class Paths
If the class is written as part of a package, this path must be fully qualified. To fully
qualify a class path, begin with the top level of the package, adding a period
between each package level and between the last level of the package and the class
name.

Example
For example, if the package is myprojects.myclasses, the class is TestClass, and the
method name is testMethod, the values required to specify this command in the
Command Info area of the Command Properties window are testMethod (for the
Name field) and myprojects.myclasses.TestClass::testMethod (for the Command
field).

1.2.1.2 Referencing Best Practice Java Methods in Script Author
Oracle Applications includes Java methods written specifically for Oracle Scripting
to quickly enable frequently requested script runtime functionality. These best
practice Java methods are organized into three classes: ScriptUtil, NodeDefault, and
NodeValidation. Each is in a package (oracle.apps.ies.bestpractice), and must be
fully qualified.

Example
For example, if the package is oracle.apps.ies.bestpractice, the class is
NodeValidation, and the method name is checkNullValue, the values required to
specify this command in the Command Info area of the Command Properties
window are checkNullValue (for the Name field) and
oracle.apps.ies.bestpractice.NodeValidation::checkNullValue (for the Command
field).

To illustrate this concept, consider a custom Java method that checks for a null
value. This Java method, checkNullValue, is useful to ensure that a value is returned
for an executed PL/SQL command.

In the first example, this Java method is written in custom code with no package.
The checkNullValue method is in the NodeValidation class file. The Command field
to specify this command is NodeValidation::checkNullValue.

Command Types

1-8 Oracle Scripting Developer’s Guide

To use the same method from the best practice Java, the value of the Command field
must be fully qualified to reference the Java method in its package. Thus, the
Command field to specify this command using best practice Java is
oracle.apps.ies.bestpractice.NodeValidation::checkNullValue.

This fully qualified class path ensures the Java class loader has access to the
NodeValidation class and all its methods, including checkNullValue.

Thus, best practice Java methods enable an enterprise to substantially reduce or
even eliminate writing, deploying and testing custom Java. This reduces
development time and costs, providing a faster time to market and enabling code
reuse, while additionally reducing the requirement for Apache Web server
configuration file customization.

Guidelines
■ Do not attempt to modify APPS.ZIP to include custom Java methods. This

could impact the behavior of Oracle Scripting and other Oracle applications.

■ Best practice Java methods can be used to support all Oracle Scripting graphical
scripts, whether executed in the agent interface or as a Web-based survey.

■ When using best practice Java methods to extend Oracle Scripting functionality,
review the Java method signature, which includes:

■ Scope modifier

■ Return type

■ Java method name

■ Arguments or parameters (if any)

You will also need to know what exceptions are thrown, if any. This information
is available in the documentation for the best practices Java methods.

■ Arguments needed by best practice methods can be passed as parameters to a
command in the Script Author. An example showing how to do this is
described in Section 2.3.6, "Referencing Best Practice Java in a Command".

See Also
Section 2.3, "Best Practice Java Methods"

Section 2.3.3, "ScriptUtil Java Methods"

Section 2.3.4, "NodeDefault Java Methods"

Section 2.3.5, "NodeValidation Java Methods"

Command Types

Understanding Script Author Commands 1-9

1.2.1.3 Passing the Proxy Bean as a Parameter to a Java Command
When developing or referencing custom Java code, many commands require you to
pass the server proxy bean. The server proxy bean is the object that serves as a
proxy on behalf of custom code, allowing the custom code to invoke Scripting APIs.

The proxy bean is instantiated within the same Java Virtual Machine (JVM) as the
session object. This Java bean can be referenced by Java command objects created as
part of a script (which are also instantiated within the JVM of the Session object).
Thus, the proxy bean can be used by these Java command objects to call APIs on the
Session object.

The proxy bean and its APIs and events serve as the sole interface between an
external application and the Scripting Engine, which resides (in the Apache mid-tier
architecture) in the Apache JServ.

You must include the proxy bean as a parameter for any Java command using
Oracle Scripting APIs.

Use this procedure to pass the server proxy bean as a parameter to a Java command
in a graphical Script Author script.

Prerequisites
■ Identify the name and location in a graphical script of the appropriate Java

method.

■ The Java method must require the proxy bean to invoke an Oracle Scripting
API.

Responsibility
Scripting Administrator

Steps
1. Using the Script Author, open a new or existing graphical script.

2. Navigate to the object containing the appropriate Java command.

3. Open the Command window.

4. In the Parameters area, verify that this command does not already pass the
server proxy bean. If you see Command parameter: Proxy, this procedure is not
required.

5. From the Parameters area, click Add.

Command Types

1-10 Oracle Scripting Developer’s Guide

The Parameters window appears.

6. Enter the appropriate information to invoke the server proxy bean.

7. In the Parameters window, in the Name field, type Proxy in exact case.

8. In the Parameters window, click OK.

The Parameters window closes.

9. In the Command window, click OK.

10. Save your work.

Guidelines
Some custom Java methods call or instantiate the server proxy bean as pb, other
methods as Proxy. Regardless, you can pass this particular parameter by referencing
only the bean name (Proxy).

1.2.1.4 Standard Java Naming and Usage Conventions
Oracle Corporation recommends that you adhere to standard Java naming and
usage conventions. For example:

■ Package names are all lower-case. To fully qualify a class path, begin with the
top level of the package, adding a period between each package level and
between the last level of the package and the class name.

■ Class names begin with an upper-case letter. If the name is a concatenated
string of words, the initial letter of each subsequent word is capitalized. The
remaining characters are lower-case.

Since a class is a set of related Java methods that share common characteristics,
one manner of naming the class is to describe those characteristics. For projects
with a single class, you may wish to name the class after the function of the
script or the name of the campaign.

Note: You do not need to specify a class or value. However, the
value you type into the Name field of the Parameters window is
case-specific. Ensure the P is upper case and the remaining letters
are in lower case.

Command Types

Understanding Script Author Commands 1-11

■ Method names begin with a lower-case letter. If the name is a concatenated
string of words, the initial letter of each subsequent word is capitalized. The
remaining characters are lower-case.

The method name should reflect what the method does. If a procedure, using a
verb-plus-object name is standard (for example, setValue). If a function, the
same is true, usually descriptive of the return value (for example, getName).

■ Variables and return values, like method names, typically begin with a
lower-case letter. If the name is a concatenated string of words, the initial letter
of each subsequent word is capitalized. The remaining characters are
lower-case.

Variable names and return value names are typically short and descriptive (for
example, columnName or firstName). Variables may be listed with their data
type.

1.2.1.5 Importing Scripting Classes into Java Source Files
Whether creating custom Java or using best practice Java provided by Oracle
Corporation, you must have the appropriate import statements in your Java source
file. When the compiled class file contains the appropriate references, the methods
in the class have access to existing Java classes created to support Oracle Scripting.
The methods and objects in the referenced files are imported and made available to
the class loader as if the definitions were included in your Java file. Only import
public Java classes; referencing private classes is not supported.

Following is a recommended minimum set of import statements to include in Java
source files used for Oracle Scripting. This is typically placed in the source file after
the package designation (if any) and before the designation for the class to begin.

import oracle.apps.ies.integration.common.*;
import oracle.apps.ies.integration.common.exception.*;

Note: Some of the Best Practice Java methods described in this
section do not follow standard Java naming conventions in this
release. In the near future, updated best practice Java methods will
be included in APPS.ZIP that follow these standards. This
document will be updated at that time, listing only the most recent
set of best practice methods. However, to ensure compatibility, the
older set of methods will continue to be included in shipped code,
but decremented. Look for update information on OracleMetaLink.

Command Types

1-12 Oracle Scripting Developer’s Guide

If creating custom Java beans to be used as replacements for panels, you can also
include:

oracle.app.ies.integration.client
oracle.app.ies.integration.client.external

Add to your import statements any Java classes you need to import in addition,
such as:

import java.text.*;
import java.util.*;

The above Java classes are an example only, and may not be required to support
your code. Additionally, other classes may be required, as appropriate. Reference
JDK documentation for information on appropriate Java classes and inheritance.

1.2.2 PL/SQL Commands
Using a PL/SQL command, you can execute any procedure or function stored in a
database table. The PL/SQL command is executed when the appropriate object is
reached in the flow of the script at runtime.

Guidelines
■ You can interact with database tables using PL/SQL commands or by using a

Script Author block object. Blocks can query, insert, or update database tables,
in addition to providing a clearly identifiable location for inserting an API into
a script. For information on defining blocks, see Using Oracle Scripting > Using
the Script Author > Defining Blocks.

■ PL/SQL commands in graphical scripts require connection information to be
defined in the command. This tells Oracle Scripting how and where to connect
to the appropriate database tables to access the stored procedure or function.
For information on connection information, see Using Oracle Scripting > Using
the Script Author > Deploying the Script > Connecting to the Database.

■ Commands are associated with objects using several approaches. For more
information on where PL/SQL or other commands can be placed into a script,
see Section 1.1.1, "Where Commands Are Defined in the Script Author".

■ No provision is made in the Script Author to write, test, or deploy to the
database stored PL/SQL procedures or functions. All PL/SQL code must be
created by certified, trained and knowledgeable individuals using external
applications or utilities.

Command Types

Understanding Script Author Commands 1-13

■ When defining a PL/SQL command in the Script Author, you must assign
parameters (using the Parameters area of the Command Properties window) to
match all parameters in the stored function or procedure, whether they are IN,
OUT, or IN/OUT type. Both OUT and IN/OUT parameters will be passed back
into the Scripting blackboard as key/value pairs. The blackboard key for each
parameter is identical to the name used when the parameter is defined in the
Script Author.

See Also
Section 1.2.1, "Java Commands"

Section 1.2.3, "Blackboard Commands"

Section 1.2.4, "Forms Commands"

Section 1.2.5, "Constant Commands"

Section 1.2.6, "Delete Actions"

1.2.3 Blackboard Commands
The Scripting blackboard is a virtual memory space where information is stored in
key/value pairs. This information is only retained for the duration of a single
Oracle Scripting interaction.

Using a blackboard command, you can retrieve values from a specific script
interaction, and display the value at runtime, or use the value for processing within
the script.

This section includes the following topics:

Section 1.2.3.1, "Providing Values to the Blackboard"

Section 1.2.3.2, "Uses of the Blackboard Command"

Section 1.2.3.3, "Maintaining State in the Scripting Blackboard"

Section , "Oracle Scripting Blackboard APIs"

Section 1.2.3.4, "How Long Is Blackboard Information Retained?"

Section 1.2.3.5, "Using Scripting APIs"

See Also
Section 1.2.1, "Java Commands"

Section 1.2.2, "PL/SQL Commands"

Command Types

1-14 Oracle Scripting Developer’s Guide

Section 1.2.4, "Forms Commands"

Section 1.2.5, "Constant Commands"

Section 1.2.6, "Delete Actions"

1.2.3.1 Providing Values to the Blackboard
There are three methods of providing values to the Scripting blackboard. These
include:

■ Providing an answer at runtime

■ Setting a value using the setBlackBoard API

■ Launching a script from an integrated application

Providing an Answer at Runtime
When an answer is provided by the script end user at runtime, this information is
written to the blackboard. The key to access this information is the "question" (or
"answer definition") name entered into the Name field of the Answer Entry window
in the Script Author when the panel answer was defined. The answer provided by
the script end user at runtime is the value.

For example, if you create an answer definition in the Script Author named
lastName, then at runtime, as soon as that answer is provided by the script end user
(Mr. Lincoln) in the corresponding text field, the Scripting blackboard is populated
with the key value pair of (lastName, "Lincoln"). This value persists until the script
terminates, or the panel is refreshed and populated with a different value.

Setting a Value Using the setBlackBoard API
Using the Scripting API setBlackBoardAnswer in a Java command, information can
also be written explicitly to the blackboard without interaction by the script end
user. This takes two parameters: the blackboard key (entered as a string) and the
value you wish to set (a serializable value). The return type for this API is void.

Regardless of the method of populating information to the blackboard, a blackboard
command for which you specify the key will return the requested value.

Launching a Script from an Integrated Application
Launching a script from either of two integrated business applications, Oracle
TeleSales or Oracle Collections, results in that application invoking Scripting APIs
to set a distinct set of values from the business application to the Scripting
blackboard.

Command Types

Understanding Script Author Commands 1-15

For more information, see the section Parameters Passed to the Scripting Blackboard
in the Oracle Scripting Implementation Guide.

1.2.3.2 Uses of the Blackboard Command
Using an embedded value containing a blackboard command, you can display
information known to the Scripting Engine for the current session to display that
value in a panel.

You can also use a blackboard command as a parameter to another command. In
this way, you can pass a required value stored in the blackboard for the current
script session to its parent command to execute. For example, if you need to pass
the name of the current customer as a parameter to a PL/SQL command, you can
then retrieve specific information for that customer into the script.

Another example of using a blackboard command as a parameter to another
command is to pass blackboard parameters to a Java command, and use the Java
code to evaluate whether specific information has been collected. Based on whether
the indicated keys are null, you can route the flow of the script (for example, to a
group that collects the information and routes the script accordingly). This can
provide dynamic features to the script at runtime based on the set of requirements
indicated in Script Author commands.

1.2.3.3 Maintaining State in the Scripting Blackboard
The blackboard maintains state for the key/value pairs it stores, relative to the flow
of the script. In this way, if there is a change in the value assigned to the key, this
can be reflected based on the method or API you use to evaluate the key/value pair.

Take the example of a particular blackboard key in a given script (firstName). In this
scenario, there is only one manner in which a value is provided: the script end user
enters his first name (Juan) in a text field in the second panel.

If you display the key/value pair prior to the answer being provided, the result is
"firstName", null. If you display the key/value pair after the answer is provided,
the result is "firstName", "Juan". If later in the script the end user returns to this
panel and changes the answer to "John," then the result of displaying this key/value
pair will be "firstName", "John."

Guidelines
■ Commands are associated with objects using several approaches. For more

information on where blackboard or other commands can be placed into a
script, see Section 1.1.1, "Where Commands Are Defined in the Script Author".

Command Types

1-16 Oracle Scripting Developer’s Guide

■ Blackboard commands do not require the ServerProxyBean to be passed as a
parameter. You simply need the blackboard key. (Note that this may not be true
when using blackboard APIs that require the proxy bean to be in the Interaction
state.)

■ When defining a blackboard command, there are two values in the Command
Info area of the Command Properties window: Name, and Command. The
Command field is crucial, and must specify the blackboard key. The Name field
is optional. Many script developers use the same value (the blackboard key) for
this field. If that is not clear, you may use a different value. The Name field can
also be left blank, but this is not recommended.

■ If attempting to access a blackboard value that was entered by the script end
user responding to a multiple-selection answer type (a checkbox group or
multi-select list box), then the command you create in the Script Author must
know that the response or responses are stored in a vector. Thus, this
blackboard command would be nested in a parent command. For the nested
blackboard command, select the option Add Value as Command? When the
command executes at runtime, the Scripting Engine attempts to evaluate each
parameter of a command. If the parameter is marked as an Iterating Parameter,
the Scripting Engine verifies that the value of the parameter is a vector. Then it
iterates through the vector, executing the command once for each element in the
vector. Each element in the vector is passed to the command at the same place
in the list of parameters as the iterating parameter.

1.2.3.4 How Long Is Blackboard Information Retained?
Information stored in the Scripting blackboard is only retained for the duration of a
single Scripting interaction. This interaction begins with the instantiation or launch
of a specific script, and ends either when an agent terminates the script manually or
when the script has concluded. A script is concluded when the termination node on
the root graph or top level of the canvas is reached in the flow of the script.

1.2.3.5 Using Scripting APIs
Using a variety of Scripting APIs, information can be written explicitly to the
blackboard, or manipulated from the blackboard. To explicitly write values to the
blackboard, you must use blackboard APIs as Java commands.

Using Scripting blackboard APIs, you can enable selection and dynamic
presentation of appropriate questions based on answers previously provided by the
script end user (or by evaluating blackboard information explicitly pulled into the
script from database tables).

Command Types

Understanding Script Author Commands 1-17

The table below lists Oracle Scripting blackboard APIs, including the method name,
a description of the method, the return type, and any parameters passed.

Oracle Scripting Blackboard APIs

1.2.4 Forms Commands
Using forms commands in graphical scripts created with the Script Author, you can
accomplish the following:

■ Get a value from forms-based Oracle applications to use in a script.

■ Set a value in forms-based Oracle applications from a script.

Method Name Description Return Type Parameters

getRelativeBlackBoardAnswer Returns the answer for the specified
blackboard key relative to the point in the
script that the command is executed.
Returns null if no value is associated
with the key.

Serializable Proxy

String key

getLastBlackBoardAnswer Returns the last answer saved to the
blackboard for the specified key,
regardless of the point in the script that
the command is executed. Returns null if
no value is associated with the key.

Serializable Proxy

String key

getAllBlackBoardAnswers Returns a vector containing all the
answers in the blackboard for the
specified key. Returns null if no value is
associated with the key.

Vector Proxy

String key

setBlackBoardAnswer Sets the value for the specified
blackboard key. This API is not
recommended to be used to set a value
identical to a key created by using an
answer definition name in a script.

void Proxy

String key

Serializable value

removeAllBlackBoardAnswers Removes all answers in the blackboard
for the specified key. Recommended only
for removing values placed by using the
setBlackBoardAnswer API in a Java
method. This API is not recommended to
remove values for a key created using an
answer name.

void Proxy

String key

Serializable value

Command Types

1-18 Oracle Scripting Developer’s Guide

■ Launch other forms-based applications from a script.

■ Launch a specified URL in a Web browser from a script.

■ Invoke custom PL/SQL in response to a forms command

■ Call business application-specific APIs customized for use with Oracle Scripting

The forms command is executed when the appropriate object is reached in the flow
of the script at runtime.

Business Rules Apply
When developing a script using forms commands, you must understand and work
within the business rules enforced by the forms-based application. Although the
forms command automates a process that would otherwise be performed by an
agent in the application, requirements for following those business rules stand.
Ignoring these requirements can negatively impact either the data the script must
retrieve or set, or the ability of the script to retrieve or set those values each time a
script is executed.

For example, if trying to obtain a customer’s last name from a forms-based
customer profile, you must ensure that the customer profile is populated.

As another example, if a forms-based application requires you to provide
information in form A prior to accessing form B, results may be unpredictable
unless your script provides the prerequisite values for form A prior to getting or
setting data in form B.

In general, using forms commands in the Script Author, you can get or set values in
any form directly accessible from the Navigator (a top-level form) with high
confidence. Business rules still apply as if the agent were physically accessing the
application. For example, the user must have the appropriate responsibility to open
an item from the Navigator and may require specific roles, usages, or group
memberships.

Second and subsequent level forms (nested forms accessed through the top-level
form) are likely to have prerequisites or dependencies for data or agent interaction
that may not be required at the top level. The further a form is nested (the more
interaction required by the agent to reach the form in the application from the
Navigator), the more likely it is to have such dependencies. When you automate the
process in a script, you must ensure those requirements are met as surely as if the
agent were clicking in the business application.

Thus, scripts getting or setting forms values should be thoroughly and rigorously
tested to ensure expected results.

Command Types

Understanding Script Author Commands 1-19

Guidelines
■ Forms commands are used to integrate scripts with Oracle Forms-based

applications. This requires appropriate installation and implementation of those
applications and a working Forms server.

■ To set a value in a form, two conditions must prove true:

1. The form must be able to be invoked by APP_NAVIGATE.EXECUTE or
FND_FUNCTION.EXECUTE forms commands. All appropriate parameters
for each of these specific commands must be provided.

2. The Scripting form must be part of the same forms window or set as the
form in which you want to set a value. Forms applications that are part of
the "Scripting workbench" object group own some of Scripting’s objects,
including bean_area, window, and canvas, and can more freely exchange
information. At time of publication, of the three business applications
integrated with Oracle Scripting, only the Customer Support module of
Oracle TeleService currently meets this definition.

■ To get a value from a form (whether you wish to display the value in a script,
use the value for evaluating logic to control the script flow, or write that value
elsewhere) the form must be open. If the value of the form field is null, you
must ensure the logic in your commands considers a null condition prior to
attempting to display the value in the script, or the script will hang (pause and
halt processing) and the agent will need to close the script manually, losing all
information in the current Oracle Scripting session.

■ When defining a forms command in a graphical script, in the Command Info
area of the Command Properties window there are two fields: the Name field
and the Command field.

■ While the name value is not critical to the execution of the command, you
should provide a meaningful value in this field. Some developers choose to
use the same precise string for both the Name and Command values.
Others elect to use the name field to designate the purpose for the
command. If designated, ensure the values you provide meet established
naming conventions or guidelines.

Note: Based on the information above, you cannot get or set
values in integrated Forms-based applications such as Oracle
TeleSales or Oracle Collections, unless changes are made to those
applications to be part of the Scripting workbench object group.

Command Types

1-20 Oracle Scripting Developer’s Guide

■ The command value generally contains the function for the command.
Thus, if using the APP_NAVIGATE.EXECUTE command, type this string in
the Command field.

■ Command parameters to a forms command must consist of the block name and
the form field. These are entered into the parameter window in the Value field
using the syntax <block name>.<field name>. (The block is a block defined in
the same form that contains the Scripting Window.) The Name field of the
parameter is not critical. As a general rule, the same value can be used for both
fields. However, you must ensure consistency with designated project
guidelines, if any.

■ Forms commands must contain a return value as a parameter if the intention of
the command is to return a value. This is true regardless of whether the value is
shown as an embedded value in the panel layout editor, or whether the value is
saved to the Scripting blackboard.

This section includes the following topics:

■ Section 1.2.4.1, "Oracle Scripting Forms APIs"

■ Section 1.2.4.2, "Getting a Value from Forms-Based Oracle applications"

■ Section 1.2.4.3, "Setting a Value in Forms-Based Applications"

■ Section 1.2.4.4, "Defining a Shortcut Button to Launch a Form"

■ Section 1.2.4.5, "Launching a Web Browser as a Script Action"

■ Section 1.2.4.6, "Calling APIs Customized for Use with Oracle Scripting"

See Also
Section 1.2.1, "Java Commands"

Section 1.2.2, "PL/SQL Commands"

Section 1.2.3, "Blackboard Commands"

Section 1.2.4, "Forms Commands"

Section 1.2.5, "Constant Commands"

Section 1.2.6, "Delete Actions"

1.2.4.1 Oracle Scripting Forms APIs
The following are Oracle Scripting APIs that can be called as Forms commands.

Command Types

Understanding Script Author Commands 1-21

See Also
■ Section 1.2.4.2, "Getting a Value from Forms-Based Oracle applications"

Command Name Description Parameters Return Value

getValueFromForm Returns the answer for the specified field
in the containing form, as specified by
the BLOCK.ITEM command parameter.
Returns null if no value is associated
with the specified form field.

Requires a return value to be specified.

BLOCK.ITEM Required

setValueInForm Sets the contents of the Value command
parameter from the Script Author to the
specified field in the containing form, as
specified by the BLOCK.ITEM command
parameter.

The Value parameter can be a constant
value, or a value returned by executing
another command

BLOCK.ITEM

Value

None

FND_
FUNCTION.EXECUTE

This function opens a new instance of a
form. This should be used whenever you
need to open a form programmatically.

■ Function that
launches the
specific form

Any standard
parameters
associated with
that function

None

APP_
NAVIGATE.EXECUTE

This function calls a form function to
reuse an instance of the same form that
has already been opened.

■ Function that
launches the
specific form

■ Any standard
parameters
associated
with that
function

None

WEB.SHOW_DOCUMENT This command allows a script to launch a
URL as an action within the script.

■ Function that
launches the
specific form

Any standard
parameters
associated with
that function

None

Command Types

1-22 Oracle Scripting Developer’s Guide

■ Section 1.2.4.3, "Setting a Value in Forms-Based Applications"

■ Section 1.2.4.4, "Defining a Shortcut Button to Launch a Form"

■ Section 1.2.4.5, "Launching a Web Browser as a Script Action"

■ Section 1.2.4.6, "Calling APIs Customized for Use with Oracle Scripting"

1.2.4.2 Getting a Value from Forms-Based Oracle applications
Use this procedure to get a value from forms-based Oracle applications to use in a
script. The getValueFromForm application program interface (API) takes one
parameter (the BLOCK.ITEM attribute of the value you wish to retrieve from the
form) and one return value (the name you use in the Script Author to reference the
value returned from the form).

The value returned by the command is not automatically set to the Scripting
blackboard, but is available to the Scripting Engine (after the command is
successfully executed) to be used in one of three ways:

1. To populate an answer control (using the default command specified in the
question’s data dictionary).

2. To display in a panel using an embedded value (using the name provided in the
Value field of the return value parameter).

3. To use the return value of the forms command as a parameter to another
command. In this case, the forms command would be nested in the top-level
command, and the Add Value as Command? check box is selected, providing a
second command properties window in which to define the forms command.

If retrieving the value to use later in the script with blackboard commands,
getValueFromForm API can be associated anywhere a command can be specified.

Prerequisites
■ The form from which the value is retrieved must be accessible by the

responsibility of the current user.

Note: In order to use the retrieved value in any other manner or at
any other location in the script, you must first set the return value
to the blackboard using the setBlackBoardAnswer API (typically
using a Java command), and retrieve it using the blackboard
key/value pair.

Command Types

Understanding Script Author Commands 1-23

■ You must know the block and field name for the specific form value you want
to retrieve. From an Oracle Forms window, with your cursor in the appropriate
field, select Help > Diagnostics > Examine to view the block and field variable
names.

■ You must account for null values to ensure no errors are encountered.
Attempting to retrieve null values can cause a substantial delay at script
runtime until a timeout for the request is encountered.

Steps
1. If you want to display the value returned by this forms command in the current

panel as an embedded value, then perform the following:

a. Navigate to the panel layout editor.

b. Enter the appropriate text you want to appear at runtime.

c. At the location in the panel text in which you want the return value from
the forms command to appear, type any text as a placeholder.

For example, type EV.

d. Highlight the placeholder text, and from the panel layout editor toolbar,
click the EV button to indicate that you wish to create an embedded value.

The Modify Command Properties button in the panel layout editor toolbar
enables.

e. Click the Modify Command Properties button.

The Command Properties window appears.

2. If you want to display the value returned by this forms command in the answer
control of a new panel answer, then perform the following:

a. Navigate to the Answer Entry Dialog window of the designated panel
answer.

b. In the Name field, type a name for this question (also known as an answer
definition).

For example, type contactPersonFirstName.

c. From the UI Type area, define the question user interface control type.

For example, to provide the value of the contact person’s first name in a text
field, select Text Field.

Command Types

1-24 Oracle Scripting Developer’s Guide

d. Optionally, if you want the question control to contain a label in the script at
runtime, in the Label for reporting field, type a value.

For example, type Contact person first name:

e. Click Edit Data Dictionary.

The Edit Data Dictionary window appears. The last tab selected during this
Script Author session is selected.

f. Click the General tab.

g. In the General area, for the Default Command field, click Edit.

The Command Properties window appears.

3. From the Command Type area, select Forms Command.

4. In the Command Info area, in the Name field, type a name for this command.

For example, type getContactPersonFirstNameFromForm.

5. In the Command field, type getValueFromForm.

6. In the Parameters area, click Add.

The Parameters window appears.

Power User Tip: If defining several similar forms commands, you
may want to define the first command in the command library.
Subsequently, when accessing the Command Properties window,
you can click Use Command Library, select the appropriate script
and click OK, and then modify properties as required.

Note: The value for the Name field is not critical, but the field
must not be null. Some developers use the getValueFromForm API
name here as well as the Command field; others enter a description
of the parameter; others combine both, such as getValueCONT_
PER_FIRST_NAME. Ensure you follow any designated project
guidelines or naming conventions.

Note: This value is case-sensitive.

Command Types

Understanding Script Author Commands 1-25

7. In the Parameters window for this command parameter, perform the following:

a. Leave the Class field blank.

b. In the Name field, enter a name for this command parameter.

For example, for the contact person first name, enter CONTACT_HEADER_
BLK.CONT_PER_FIRST_NAME.

c. In the Value field, enter the BLOCK.ITEM value for the form value you
want to retrieve using this command parameter.

For example, for the contact person first name, enter CONTACT_HEADER_
BLK.CONT_PER_FIRST_NAME.

d. Click OK.

The Parameters window for the command parameter closes.

The Command Properties window displays the Name value of the
command parameter in the Parameters area.

8. In the Return Value area, perform the following:

a. Click Edit.

The Parameters window for this return value appears.

Note: The parameters window for a command parameter appears
the same as the parameters window for a return value. Ensure you
enter the command parameter value in the correct field.

Note: The value for the Name field is not critical, but the field
must not be null. Some developers use the BLOCK.ITEM value here
as well as in the following Value field; others enter a description of
the command parameter. Ensure you follow any designated project
guidelines or naming conventions.

Note: The parameters window for a return value appears the
same as the parameters window for a standard Script Author
command parameter. Ensure you enter the return value parameter
in the correct field.

Command Types

1-26 Oracle Scripting Developer’s Guide

b. In the Parameters window, in the Name field, enter any meaningful value.

For example, enter the BLOCK.ITEM value, or a simplified version such as
ContPerFirstName or FirstName.

c. Leave the Value field empty.

d. Click OK.

The Parameters window for the return value parameter closes.

The Command Properties window displays the Name value of the
parameter in the Return Value area.

9. Click OK to save the properties you defined and to close the Command
Properties window.

10. Save your work.

11. When executed from the Customer Care component of Oracle TeleService, this
script will retrieve the populated value of the selected field name to the script
do display in the panel text or answer control, as appropriate.

Guidelines
■ Values returned from a form can be displayed in a panel using an embedded

value using the procedure described above.

■ Values returned from a form can be displayed as the default command of an
answer control using the procedure described above.

■ Values returned from a form can be used as parameters in another command.

■ Before values returned from a form can be used as parameters in any other
Script Author command, you must save them to the blackboard using the
setBlackBoardAnswer API as a Java command.

■ This will not function with Oracle TeleSales or Oracle Collections.

See Also
■ Section 1.2.4.1, "Oracle Scripting Forms APIs"

■ Section 1.2.4.3, "Setting a Value in Forms-Based Applications"

■ Section 1.2.4.4, "Defining a Shortcut Button to Launch a Form"

■ Section 1.2.4.5, "Launching a Web Browser as a Script Action"

■ Section 1.2.4.6, "Calling APIs Customized for Use with Oracle Scripting"

Command Types

Understanding Script Author Commands 1-27

1.2.4.3 Setting a Value in Forms-Based Applications
Use this procedure to set a value in forms-based Oracle applications from within a
script. The setValueInForm API takes two command parameters (the BLOCK.ITEM
attribute of the value you wish to set in the form, and the Value parameter which
specifies the value to set). No return values are required.

Prerequisites
■ In order to set a value in a form from a script, the form must be open and the

field must be modifiable.

■ The script user must have the appropriate responsibility to access the specified
field.

Steps
1. From an appropriate location in a script, access the Command Properties

window.

2. From the Command Type list, select Forms Command.

3. In the Command Info area, in the Name field, type a name for this command.

For example, type setContactPersonFirstNameInForm.

4. In the Command field, type setValueInForm.

Power User Tip: If defining several similar forms commands, you
may want to define the first command in the command library.
Subsequently, when accessing the Command Properties window,
you can click Use Command Library, select the appropriate script
and click OK, and then modify properties as required.

Note: The value for the Name field is not critical, but the field
must not be null. Some developers use the setValueInForm API
name here as well as the Command field; others enter a description
of the parameter; others combine both, such as setValueCONT_
PER_FIRST_NAME. Ensure you follow any designated project
guidelines or naming conventions.

Command Types

1-28 Oracle Scripting Developer’s Guide

5. In the Parameters area, click Add.

The Parameters window appears.

6. In the Parameters window for this command parameter, perform the following:

a. Leave the Class field blank.

b. In the Name field, enter a name for this command parameter.

For example, for the contact person first name, enter CONTACT_HEADER_
BLK.CONT_PER_FIRST_NAME.

c. In the Value field, enter the BLOCK.ITEM value for the form value you
want to set using this command parameter.

For example, for the contact person first name, enter CONTACT_HEADER_
BLK.CONT_PER_FIRST_NAME.

d. Click OK.

The Parameters window for the command parameter closes.

The Command Properties window displays the Name value of the
command parameter in the Parameters area.

7. In the Parameters area, click Add to begin adding the second command
parameter.

The Parameters window appears.

Note: This value is case-sensitive.

Note: The parameters window for a command parameter appears
the same as the parameters window for a return value. Ensure you
enter the command parameter values in the correct field.

Note: The value for the Name field is not critical, but the field
must not be null. Some developers use the BLOCK.ITEM value here
as well as in the following Value field; others enter a description of
the command parameter. Ensure you follow any designated project
guidelines or naming conventions.

Command Types

Understanding Script Author Commands 1-29

8. In the Parameters window for this command parameter, perform the following:

a. Leave the Class field blank.

b. In the Name field, type Value.

c. In the Value field, type the value you want to pass to the form.

For example, to enter a contact person first name of Norman, type Norman.

d. Click OK.

The Parameters window for the command parameter closes.

The Command Properties window displays the Name value of the
command parameter in the Parameters area. Two parameters are listed.

9. Click OK to save the properties you defined and to close the Command
Properties window.

10. Save your work.

11. When executed from the Customer Care component of Oracle TeleService, this
script will set the specified value into the designated field as identified by the
BLOCK.ITEM parameters.

Guidelines
■ Values can only be passed to a form in a modifiable field.

■ The form must be open to successfully set the value.

■ This will not function with Oracle TeleSales or Oracle Collections.

See Also
■ Section 1.2.4.1, "Oracle Scripting Forms APIs"

■ Section 1.2.4.2, "Getting a Value from Forms-Based Oracle applications"

■ Section 1.2.4.4, "Defining a Shortcut Button to Launch a Form"

■ Section 1.2.4.5, "Launching a Web Browser as a Script Action"

■ Section 1.2.4.6, "Calling APIs Customized for Use with Oracle Scripting"

1.2.4.4 Defining a Shortcut Button to Launch a Form
You can launch a form from Oracle forms-based applications from within a script.
Use this procedure to define a Shortcut button in the button bar to open a specific
form. When the script is executed in the Scripting Engine agent interface at runtime,

Command Types

1-30 Oracle Scripting Developer’s Guide

you can click a button in the shortcut button bar to open the specified form in a
separate window.

Prerequisites
■ The function you wish to associate with the shortcut button must be accessible

to the Oracle Applications responsibility of the user that will execute the script.

■ More than one window may be associated with the same form.

Steps
1. Using the Script Author, open a new or existing graphical script.

2. Double-click on an empty area of the canvas, or select Script Properties from
the File menu, to access properties of the global script object.

3. In the script properties menu, select the Shortcut Panel attribute.

Shortcut Panel properties appear.

4. Click Add.

The Shortcut Info Entry window appears.

5. Enter Shortcut information as appropriate.

a. In the ID field, enter a unique identification name for this shortcut.

For example, if launching the Find/Enter customers form, type LF/E.fmx.

b. In the Label field, enter label that you want to appear on the shortcut
button.

For example, type Launch Find/Enter Customers Form.

c. In the Tooltip field, enter the contents of the tooltip, which will appear in
the Scripting Engine agent interface when the agent’s cursor rests on the
button.

For example, type Find or enter customers in Customer Support.

d. On the Command line, click Edit.

Note: It is not sufficient for the Oracle Applications user to be
assigned the responsibility required to execute the function. The
user executing the script must do so from the required
responsibility for the form to open successfully.

Command Types

Understanding Script Author Commands 1-31

The Command Properties window appears.

6. Enter the appropriate information to reference the command you want to
execute at runtime when the Shortcut button is clicked.

a. From the Command Type list, select Forms Command.

b. In the Command Info area, in the Name field, type a name for this
command.

For example, type the form name, AR_ARXCUDCI_STD.

c. In the Command field, type the name for the function that launches the
specified form.

For example, type AR_ARXCUDCI_STD.

d. If the specified function required any parameters, then in the Parameters
area, click Add, and enter the parameter. Click OK to save the parameter
and close the window. Repeat this step as required.

The Command Properties window displays the name value of the
parameter.

e. Click OK to save the Command Properties and close the window.

The Shortcut Info Entry Dialog window displays the name value of the
command.

7. In the Shortcut Info Entry Dialog window, to enable the Shortcut button upon
the launch of the script, select Enabled.

A check appears, indicating the button is enabled.

8. If you want to save your work and continue, click Apply.

9. To add additional Shortcut buttons, click Add in the Shortcut Panel properties
and repeat the required steps.

10. Click OK to save your work and exit the Shortcut Info Entry window.

Note: The value for this field is not critical. Some developers use
the same name as the Parameter Value field; others enter a
description of the parameter. Ensure you follow any designated
project guidelines or naming conventions.

Command Types

1-32 Oracle Scripting Developer’s Guide

Guidelines
■ The responsibility of the logged-in user governs the functions accessible in

Forms-based applications.

■ When you click a shortcut button in the agent interface to open a form, any
forms that are currently minimized (such as the Script Chooser) may also
appear.

■ For command values, use APP_NAVIGATE.EXECUTE only when you want to
reuse an instance of a form that has already been opened. In all other instances,
use FND_FUNCTION.EXECUTE as the command value.

See Also
■ Section 1.2.4.1, "Oracle Scripting Forms APIs"

■ Section 1.2.4.2, "Getting a Value from Forms-Based Oracle applications"

■ Section 1.2.4.3, "Setting a Value in Forms-Based Applications"

■ Section 1.2.4.5, "Launching a Web Browser as a Script Action"

■ Section 1.2.4.6, "Calling APIs Customized for Use with Oracle Scripting"

1.2.4.5 Launching a Web Browser as a Script Action
Use this procedure to define a forms command in a graphical script to launch a
specific URL in a Web browser as an action to a command.

Web browsers can also be opened to a specific URL using the setBrowserURL
Oracle Scripting API. That API can be used to establish a hypertext link in panel
text that the runtime user can select if desired. Using this API as a forms command
to a specified action ensures that the browser will launch when the action is
triggered in the script, removing the element of choice and obviating the
requirement to display a hypertext link.

Prerequisites
The designated URL must be accessible by users of the script. For example, if
security such as a firewall is in place, the user must be on the appropriate side of the
firewall to access the site through a Web browser in order for the same action to
occur successfully using this API from a script.

Steps
1. From an appropriate location in a script, access the Command Properties

window.

Command Types

Understanding Script Author Commands 1-33

2. From the Command Type list, select Forms Command.

3. In the Command Info area, in the Name field, type a name for this command.

For example, type setURL.

4. In the Command field, type WEB.SHOW_DOCUMENT.

5. In the Parameters area, click Add.

The Parameters window appears.

6. In the Parameters window for this command parameter, perform the following:

a. Leave the Class field blank.

b. In the Name field, enter a name for this command parameter.

For example, for a command that launches Oracle’s online support portal
OracleMetaLink, type http://metalink.oracle.com.

Power User Tip: If defining several similar forms commands, you
may want to define the first command in the command library.
Subsequently, when accessing the Command Properties window,
you can click Use Command Library, select the appropriate script
and click OK, and then modify properties as required.

Note: The value for the Name field is not critical, but the field
must not be null. Ensure you follow any designated project
guidelines or naming conventions.

Note: Case is not important for this value.

Note: The value for the Name field is not critical, but the field
must not be null. Some developers describe the function of this
parameter (for example, launchMetaLink); others include the actual
URL in this field. This value appears in the command properties
window after defining the parameter. Ensure you follow any
designated project guidelines or naming conventions.

http://metalink.oracle.com

Command Types

1-34 Oracle Scripting Developer’s Guide

c. In the Value field, enter the URL you want the Web browser to open,
including the protocol.

For example, for a command that launches Oracle’s online support portal
OracleMetaLink, type http://metalink.oracle.com.

d. Click OK.

The Parameters window for the command parameter closes.

The Command Properties window displays the Name value of the
command parameter in the Parameters area.

7. Click OK to save the properties you defined and to close the Command
Properties window.

8. Save your work.

9. When this action is reached in the flow of the script, a new instance of the Web
browser used to launch the user’s Oracle Applications session will appear in a
separate window, displaying the contents of the designated page.

See Also
■ Section 1.2.4.1, "Oracle Scripting Forms APIs"

■ Section 1.2.4.2, "Getting a Value from Forms-Based Oracle applications"

■ Section 1.2.4.3, "Setting a Value in Forms-Based Applications"

■ Section 1.2.4.4, "Defining a Shortcut Button to Launch a Form"

■ Section 1.2.4.6, "Calling APIs Customized for Use with Oracle Scripting"

1.2.4.6 Calling APIs Customized for Use with Oracle Scripting
Due to its Java architecture and its ability to communicate with the applications
database, Oracle Scripting is a highly extensible application. Using application
program interfaces customized for this purpose, applications can easily
communicate with Oracle Scripting.

This section includes the following topics:

Section 1.2.4.6.1, "Oracle TeleService"

Section 1.2.4.6.2, "Oracle TeleSales and Oracle Collections"

See Also
■ Section 1.2.4.1, "Oracle Scripting Forms APIs"

http://metalink.oracle.com

Command Types

Understanding Script Author Commands 1-35

■ Section 1.2.4.2, "Getting a Value from Forms-Based Oracle applications"

■ Section 1.2.4.3, "Setting a Value in Forms-Based Applications"

■ Section 1.2.4.4, "Defining a Shortcut Button to Launch a Form"

■ Section 1.2.4.5, "Launching a Web Browser as a Script Action"

References
■ Oracle TeleService APIs are also documented in the Integrating Oracle Scripting

section of Oracle Scripting Implementation Guide.

■ Oracle TeleSales and Oracle Collections values sent to the Oracle Scripting
blackboard are documented in the Integrating Oracle Scripting section of Oracle
Scripting Implementation Guide.

■ For more information on APIs developed by business applications to work with
Oracle Scripting, see the appropriate product documentation.

1.2.4.6.1 Oracle TeleService Oracle TeleService is a forms-based business application
that includes Oracle Customer Care and Oracle Customer Support. This application
includes the ability to log and track service requests.

The Oracle Customer Care component of Oracle TeleService passes information
regarding a selected customer record to the Scripting blackboard when you execute
a Forms command in the script. A record must be selected in the Customer Care
contact center in order for the information to successfully transmit to the Scripting
blackboard. The values include information about the customer (customer ID,
customer account ID, contact and contact point ID and type), and the interaction ID.

Use this procedure to define a forms command to obtain a value passed to the
Oracle Scripting blackboard from the Customer Care component of Oracle
TeleService. If the value retrieved is to be used as a parameter for another
command, this procedure will be performed as a nested command.

Prerequisites
■ You must know the TeleService/Customer Care API name.

■ You must know the correct location in the script in which to define this
command.

Steps
1. If you want to display the value returned by this forms command in the current

panel as an embedded value, then perform the following:

Command Types

1-36 Oracle Scripting Developer’s Guide

a. Navigate to the panel layout editor.

b. Enter the appropriate text you want to appear at runtime.

c. At the location in the panel text in which you want the return value from
the forms command to appear, type any text as a placeholder.

For example, type EV.

d. Highlight the placeholder text, and from the panel layout editor toolbar,
click the EV button to indicate that you wish to create an embedded value.

The Modify Command Properties button in the panel layout editor toolbar
enables.

e. Click the Modify Command Properties button.

The Command Properties window appears.

2. If you want to display the value returned by this forms command in the answer
control of a new panel answer, then perform the following:

a. Navigate to the Answer Entry Dialog window of the designated panel
answer.

b. In the Name field, type a name for this question (also known as an answer
definition).

For example, type contactPersonFirstName.

c. From the UI Type area, define the question user interface control type.

For example, to provide the value of the contact person’s first name in a text
field, select Text Field.

d. Optionally, if you want the question control to contain a label in the script at
runtime, in the Label for reporting field, type a value.

For example, type Contact person first name:

e. Click Edit Data Dictionary.

The Edit Data Dictionary window appears. The last tab selected during this
Script Author session is selected.

f. Click the General tab.

g. In the General area, for the Default Command field, click Edit.

The Command Properties window appears.

Command Types

Understanding Script Author Commands 1-37

3. If you want to use the value returned by this forms command as a parameter to
another Script Author command, then perform the following:

a. Navigate to the Command Properties window of the top-level command.

b. In the Parameters area, define the top-level parameter required for the
top-level command.

For example, if the top-level command is a PL/SQL command to write a
record to the database, and you want to obtain the contact ID for the
selected customer, then in the Name field of the Parameters window,
provide an appropriate name (for example, contact_id).

c. In the top-level command parameter, in the Parameters window, select the
Add Value as Command? checkbox.

The Parameters window refreshes. The Value field now includes an Edit
and a Remove button.

d. In the Value field, click Edit.

The Command Properties window for the nested command appears. It is in
this window that you will define your forms command.

4. From the Command Type area, select Forms Command.

5. In the Command Info area, in the Name field, type a name for this command.

For example, type GetContactId.

Power User Tip: If defining several similar forms commands, you
may want to define the first command in the command library.
Subsequently, when accessing the Command Properties window,
you can click Use Command Library, select the appropriate script
and click OK, and then modify properties as required.

Note: The value for the Name field is not critical, but the field
must not be null. Some developers use the identical API name here
as in the Command field; others enter a description of the
parameter. Ensure you follow any designated project guidelines or
naming conventions.

Command Types

1-38 Oracle Scripting Developer’s Guide

6. In the Command field, type the exact name of the API. The Oracle TeleService
APIs are documented in the Integrating Oracle Scripting section of the Oracle
Scripting Implementation Guide.

For example, to get the contact ID for the selected customer, type GetContactId.

7. No command parameters are required.

8. In the Return Value area, perform the following:

a. Click Edit.

The Parameters window for this return value appears.

b. In the Parameters window, in the Name field, enter the name you want to
use as the blackboard value.

For example, type GetContactId.

c. Leave the Value field empty.

d. Click OK.

The Parameters window for the return value parameter closes.

The Command Properties window displays the Name value of the
parameter in the Return Value area.

9. Click OK to save the properties you defined and to close the Command
Properties window.

10. Save your work.

11. When executed from the Customer Care component of Oracle TeleService, this
script will retrieve the appropriate value and set it to the Oracle Scripting
blackboard using the return value name.

Guidelines
■ Subsequent to execution of the forms command, you can reference the value in

the blackboard using the return value name as the blackboard key to the
key/value pair.

Note: This value is case-sensitive.

Command Types

Understanding Script Author Commands 1-39

■ This can be executed as a parameter to another command in order to provide
the value obtained by the forms command as a command parameter to that
top-level command.

See Also
Section 1.2.4.6.2, "Oracle TeleSales and Oracle Collections"

1.2.4.6.2 Oracle TeleSales and Oracle Collections While Oracle TeleSales and Oracle
Collections do not allow Oracle Scripting to get or set values in forms, both business
applications do provide pre-built integration. When a script is launched from either
of these business applications (in their separate respective methods), over fifteen
possible values are sent to the Oracle Scripting blackboard. These values can be
used in the script to perform various functions, from branching to display of
information and so on, using Oracle Scripting blackboard APIs.

The full list of values that are potentially sent to the blackboard are documented in
the Integrating Oracle Scripting section of the Oracle Scripting Implementation Guide.
Note that the values must be available to the business application in order to be sent
to the blackboard; any values not available will be placed in the blackboard as a null
value. Thus, ensure your scripts take possible null values into account when using
these values. For example, you can test the value passed by the blackboard key
CONTACT_ID and, if null, present the user with the ability to retrieve the contact
ID from the applications database.

See Also
■ Section 1.2.4.6.1, "Oracle TeleService"

1.2.5 Constant Commands
Using a constant command provides a constant, predetermined value at runtime.
This is often used to provide a default selection for an answer with one or more
possible values. You can also use a constant command to provide a default return
value as a parameter to another command.

Guidelines
■ Commands are associated with objects using several approaches. For more

information on where constant or other commands can be placed into a script,
see Section 1.1.1, "Where Commands Are Defined in the Script Author".

■ Use a constant command to provide a default answer selection or lookup value
to an open-ended question at runtime to avoid a null value without using a

Command Types

1-40 Oracle Scripting Developer’s Guide

validation routine. For example, when provided with a text field or text area,
you can provide a constant value of "not applicable" that the user can overwrite
if applicable.

■ When used to provide a default answer selection, the answer can be changed at
runtime. This is true regardless of whether the answer user interface type is
open-ended (text field, text area, password without validation, single or group
check boxes, and the multi-select list box can be null) or whether it enforces a
value (radio buttons, drop-down list or multi-select list boxes, or a button if
more than one lookup is provided for button types.

■ Since the purpose of the constant command is to return a constant value,
remember to provide the desired constant string as a return value in the
Command Properties window.

■ Constant commands do not require the ServerProxyBean to be passed as a
parameter.

■ When defining a constant command, there are two values in the Command Info
area of the Command Properties window: Name, and Command. Neither of
these fields are crucial, provided you provide the constant value as a return
value to this command. Many script developers use the same value (the actual
constant value being provided) for both fields. Others use the answer definition
name, or if the answer is provided as a constant value for a blackboard key, the
blackboard key name. The Name and Command fields can also be left blank,
but this is not recommended.

See Also
Section 1.2.1, "Java Commands"

Section 1.2.2, "PL/SQL Commands"

Section 1.2.3, "Blackboard Commands"

Section 1.2.4, "Forms Commands"

Section 1.2.6, "Delete Actions"

1.2.6 Delete Actions
The delete action causes a row to be deleted from the database, based on what is
currently selected in the Scripting cursor.

When you execute a database query from a script using a query block, and one or
more rows that match your criteria are returned, the cursor holds the first row. All

Command Types

Understanding Script Author Commands 1-41

rows are retained in static memory until the next query is executed (or until the
interaction ends). Using the delete action will cause that row to be deleted from the
database.

The delete action is not strictly a command, but is provided in the same interface to
make this functionality accessible to script developers in a manner consistent with
the application’s existing paradigms.

Guidelines
■ Scripting APIs are available to advance the cursor, check if the cursor is valid,

and so forth. These can be used in combination with the delete action during
the development of a script to determine which row of information should be
deleted.

■ The delete action will delete the row of information in the database last
retrieved by a query, regardless of when in the current script interaction the last
query took place. Thus, before including a delete action in a script, it is
recommended to ensure that the relevant query is successful (that it will always
return rows). Ensuring the validity of a query prior to executing the delete
action will preclude deletion of a row returned for the previous query if the
following query returns no values in a particular set of circumstances.

■ For ease of maintenance, it is recommended that you insert the delete action as
close as possible in the flow of a script to its relevant query.

■ The delete action takes a single parameter in the Name field. The purpose of
this field is to identify the delete action within the Script Author. Regardless of
the name, the database row corresponding to the row held in the cursor will be
deleted. The Name field can also be left blank, but this is not recommended.

See Also
Section 1.2.1, "Java Commands"

Section 1.2.2, "PL/SQL Commands"

Section 1.2.3, "Blackboard Commands"

Section 1.2.4, "Forms Commands"

Section 1.2.5, "Constant Commands"

Command Types

1-42 Oracle Scripting Developer’s Guide

Customizing Oracle Scripting 2-1

2
Customizing Oracle Scripting

Each script created with Oracle Scripting is customized according to specific
requirements to achieve a particular set of goals. Oracle Scripting provides a set of
best practice Java methods, best practice survey scripts, and building blocks
(pre-built graphical script fragments) to assist you in customizing a script to extend
its functionality using existing components.

This section includes the following topics:

Section 2.1 "Customization and Support"

Section 2.2 "Determining Where to Define a Command"

Section 2.3 "Best Practice Java Methods"

Section 2.4 "Passing Parameters to the Web Interface"

Section 2.5 "Performing Advanced Graphical Script Tasks"

2.1 Customization and Support
If Oracle Scripting does not meet documented functionality, you can seek the
assistance of Oracle Support Services (OSS). However, Oracle Corporation does not
support customization or custom code. Use of the Script Author component of
Oracle Scripting requires the appropriate training, skill set, technology, and
experience.

This section includes the following topics:

Section 2.1.1 "Formal and Informal Training"

Section 2.1.2 "Skill Sets and Experience Required for Oracle Scripting"

Section 2.1.3 "Using Best Practices and Building Blocks"

Customization and Support

2-2 Oracle Scripting Developer’s Guide

See Also
Section 2.2 "Determining Where to Define a Command"

Section 2.3 "Best Practice Java Methods"

Section 2.5 "Performing Advanced Graphical Script Tasks"

2.1.1 Formal and Informal Training
For interaction center agents using the Scripting Engine agent interface, Oracle
Corporation suggests that you become familiar with any new script prior to using
the script in production. Based on the complexity of the script, this process can take
between five minutes and a few hours.

For script developers, implementation staff, scripting administration, and survey
campaign administration, Oracle Corporation suggests that you attend one or more
of the Oracle Scripting training classes available through Oracle University.

Training and certification in the requisite technologies is also prerequisite.

See Also
Section 2.1.2 "Skill Sets and Experience Required for Oracle Scripting"

Section 2.1.3 "Using Best Practices and Building Blocks"

2.1.2 Skill Sets and Experience Required for Oracle Scripting
Skill sets required for Oracle Scripting vary on components to be used at the
enterprise and the degree of complexity required. Scripting may require script
developers, script administrators, survey campaign administrators, integration with
other Oracle applications, custom code development, JSP developers and HTML
developers.

Script and Survey Development and Maintenance
The Script Author is intended for the functional user with some technical
knowledge. Additionally, certification in and knowledge of the related technologies
relevant to your scripting project is required.

Each Oracle Scripting script is customized to meet specified business needs. These
needs, defined as a set of business rules, are incorporated into a script by trained,
knowledgeable script developers using the Script Author tool. Each script includes
the script metadata, instructions regarding the one or more possible script flows to
completion, and references to any required custom code.

Customization and Support

Customizing Oracle Scripting 2-3

To make the Script Author more accessible to non-technical users, Oracle
Corporation has added a Script Wizard feature to the Script Author Java applet.
Users can quickly and easily create simple scripts or surveys by providing script
information in a series of windows known as a wizard. This feature can help reduce
the time it takes to train a non-technical Script Author user to create and modify
simple scripts. While hiding complexity from non-technical users, the Script Wizard
feature makes it possible to re-use questions and answers, reduce keystrokes and
data entry errors, and reduce some repetitious work needed to create and modify a
script.

Nonetheless, wizard scripts require the script developer to have a clear and
consistent understanding of the business rules of the script and the business process
flow required for the overall interaction. A knowledge of Oracle Scripting's
handling of data is absolutely essential to developing successful scripts.

Custom Code
Scripts typically require custom code to extend their functionality. Regardless of the
execution method of the script, custom code required may include any one or a
combination of supporting technologies. These include Java, PL/SQL, Oracle
Forms, Constant commands, and Scripting Blackboard commands. Custom code
can be associated only with graphical scripts.

JSP
Scripts to be executed as surveys also require custom JSP development in order to
customize at least one set of survey resources. These are reusable, and an enterprise
may elect to use a single set of resources for all surveys implemented in the
enterprise. Alternatively, requirements for each survey campaign may dictate a
separate set of JSP resources for each.

A set of resources includes three JSP/HTML page fragments or files: a header, a
final page, and an error page. These are all simple JSP pages, and seeded examples
are shipped in Oracle Applications. Thus, the requirement for JSP is low and may be
a one-time setup requirement.

HTML
Knowledge of HTML may be required in order to customize the presentation of a
panel in a script. When you build a script using the graphical tools of the Script
Author, you specify display text (including questions), in the panel layout editor.
You have control over font size, typeface, color and weight, using the graphic UI
provided by the panel layout editor. You also select a user interface control for each
answer, such as a radio button or check box. From these choices you select, HTML is

Customization and Support

2-4 Oracle Scripting Developer’s Guide

automatically generated to control the display of the specified panel attributes. This
HTML includes some dynamic content which is processed and displayed at
runtime.

The Script Author allows import and export of panel content layout to fully control
its appearance at runtime. If you want to customize the presentation of a panel in a
script, you can export and modify panel HTML. You can also generate original
HTML following Script Author HTML syntax rules. For example, you may wish to
use tables to align a series of radio buttons or text fields, rather than accept the
default HTML layout generated by the Script Author. You can then import the
customized HTML using the Script Author for a customized look for panel display.
This model is appropriate for executing scripts either in the agent interface or as a
survey in the Web interface.

HTML can also be modified for wizard scripts, by first graphing the script (creating
a copy of the wizard script accessible by the Script Author graphical tools). Note,
however, that once a script is graphed, any changes made to it cannot be accessed
from the Script Wizard.

Script Campaign Management
Interaction centers using Oracle Scripting in the agent interface may have specific
script campaign managers. These individuals must understand the goals and
objectives of the campaign and the business rules which must be incorporated into
the script to achieve those goals. Typically, these individuals will work closely with
script developers to determine detailed script requirements.

Scripting Administrators
Oracle Scripting includes a Scripting Administration console. Users of this
JSP/HTML-based user interface include script developers, who launch the Script
Author applet from the Home tab, and administer deployed scripts and custom
Java archive files from the Administration tab. Interaction center campaign
administrators or system administrators (as well as script developers) will also
typically access this console to run panel footprint reports to help tune a script’s
structure, increase agent performance and reduce average talk time. To access the
Scripting Administration console user interface from Oracle HTML-based
applications, these users must have the Scripting Administrator responsibility.

Since script developers can deploy, delete, and otherwise affect scripts in
production, and can manipulate information in the applications or other enterprise
database, Oracle Corporation strongly recommends that only trusted users be
provided with the Scripting Administrator responsibility.

Customization and Support

Customizing Oracle Scripting 2-5

Survey Campaign Management
Enterprises using Oracle Scripting to conduct survey campaigns must have survey
campaign administrators. These individuals must understand the goals and
objectives of the survey campaign in order to achieve those goals. These survey
campaign administrators must:

■ Identify the sample (target population of individuals whom they want to poll).

■ Create or work with individuals to create a list of possible survey respondents
consisting of the sample.

■ Work closely with script developers to determine detailed script requirements
and enforce the business rules which must be incorporated into the script to
achieve those goals.

■ Work with JSP developers to create appropriate survey resources.

■ Determine how many cycles are required to conduct each survey and schedule
calendar days for execution.

■ Use the Survey Administration console to input business requirements for the
overall survey campaign, specific cycles and deployments, define survey
resources, and monitor the progress of an ongoing campaign.

Oracle Scripting includes a Survey Administration console. Users of the
JSP/HTML-based survey campaign administrative user interface are non-technical
users with access to detailed project requirements. These individuals are typically
interaction center survey campaign administrators or system administrators.

To access the Survey Campaign administrative interface from Oracle Personal
Homepage (PHP) login, these users must have the Survey Administrator
responsibility.

Experience Recommended
Oracle Corporation strongly recommends contracting Oracle Consulting Services
(OCS) or certified, experienced consulting partners to develop the first several
scripts to be used in production in an enterprise.

See Also
Section 2.1.1 "Formal and Informal Training"

Section 2.1.3 "Using Best Practices and Building Blocks"

Customization and Support

2-6 Oracle Scripting Developer’s Guide

2.1.3 Using Best Practices and Building Blocks
Best practice scripts and Java code and building block components are provided by
Oracle Corporation on an "as is" basis. Pre-built scripts flows are provided to save
you time and serve as examples of how to customize scripts. Building blocks
typically use Application Program Interfaces (APIs) to read or write data to other
Oracle Applications or access the Oracle database, and can be incorporated into
your custom scripts to provide them with this functionality.

When used properly, each pre-built component is tested and fully functional.
However, you must fully understand how Oracle Scripting works in order to use,
modify and maintain each properly.

For example, some customization components (such as best practice surveys) may
be used as stand-alone scripts. Nonetheless, surveys cannot be executed until the
Survey component is fully implemented, and a survey campaign is created and
deployed successfully. Other customization components (such as the building
blocks) are to be used as components to incorporate into your custom scripts.
However, a building block may access an application that is not configured or not in
use in the enterprise.

The functionality of best practice and building block components is therefore only
supported to the degree that they will function in a certified test environment.
Customizations are not supported. Use of these components is at your own risk.

APIs Are Public But Not Supported
APIs used with Oracle Scripting are public, but not supported. Use of any
components that access APIs is at your own risk. Oracle Corporation development
teams will endeavor to continue supporting the APIs, best practice scripts and code,
and building blocks through subsequent releases. However, Oracle Corporation
cannot guarantee that APIs which worked in a previous release will continue to
function in future releases in all cases.

You are therefore responsible for the functionality of any customized scripts,
including use and customization of any best practice or building block components.

See Also
Section 2.1.1 "Formal and Informal Training"

Section 2.1.2 "Skill Sets and Experience Required for Oracle Scripting"

Determining Where to Define a Command

Customizing Oracle Scripting 2-7

2.2 Determining Where to Define a Command
Commands are used in Oracle Scripting graphical scripts to execute actions at
runtime. The Command Properties window is context-sensitive. When you select a
command type, the window expands, or fields are disabled, as appropriate.

Use this procedure to determine where in a graphical script to begin defining a
command to accomplish specific purposes.

Prerequisites
None

Steps
1. Using the Script Author, open a new or existing graphical script.

2. If you want to associate the command as an action to a branch:

a. In the branch properties menu, click the Actions attribute.

b. Click Add.

The Command Properties window appears.

3. If you want to associate a command as a pre-action or post-action to an object:

a. Navigate to the object for which you wish to associate a command.

b. Double-click on the object to access its properties.

■ To access properties of the global script object, double-click on an empty
area of the canvas, or select Script Properties from the File menu.

■ You can also right-click any object or branch and select Edit Blob Properties
or Edit Branch Properties from the resulting pop-up menu.

c. Expand the Actions tree in the properties menu to display action attributes.

d. Select PreAction or PostAction attribute from the Actions tree.

e. Click Add.

The Command Properties window appears.

4. If you want to associate the command as an API action for a block object:

a. Double-click on the block object to access its properties.

b. In the block properties menu, click the Types attribute.

Determining Where to Define a Command

2-8 Oracle Scripting Developer’s Guide

c. Select API Block from the list.

d. Optionally, click Apply.

e. In the block properties menu, click the Object Dictionary attribute.

The Object Dictionary appears.

f. Click Add.

The Command Properties window appears.

5. If you want to associate the command to a text or timer object in the script
information area:

a. Double-click on an empty area of the canvas, or select Script Properties
from the File menu, to access properties of the global script object.

b. In the script properties menu, select the Static Panel attribute.

 Static Panel properties appear. The Static Panel is also referred to as the
script information area.

c. In the Static Panel window, define the text or timer by selecting a position,
clicking a static information area object type (Text or Timer), and adding
appropriate ID and Label information.

d. On the Command line, click Edit.

The Command Properties window appears.

6. If you want to associate the command to a Shortcut button in the Shortcut
Panel:

a. Double-click on an empty area of the canvas, or select Script Properties
from the File menu, to access properties of the global script object.

b. In the script properties menu, select the Shortcut Panel attribute.

Shortcut Panel properties appear.

c. Click Add.

The Shortcut Info Entry window appears.

d. Enter Shortcut information as appropriate.

In the ID field, enter a unique identification name for this shortcut.

In the Label field, enter label that you want to appear on the shortcut
button.

Determining Where to Define a Command

Customizing Oracle Scripting 2-9

In the Tooltip field, enter the contents of the tooltip, which will appear in
the Scripting Engine agent interface when the agent’s cursor rests on the
button.

 On the Command line, click Edit.

The Command Properties window object appears.

7. If you want to associate a command as a parameter to a parent command:

a. Define a command.

b. Under Parameters, click Add.

The Parameters window appears.

c. In the Name field, type the name of the command parameter.

d. In the Value field, type the value for the parameter.

If this parameter is required by a Java method, this is identical to the value
referenced in the method signature (case-sensitive).

If a string, type the literal string value.

If the value is a boolean, type true or false.

e. Select Add Value as Command.

The Parameters window will expand.

f. From the Value field, click Edit.

A child Command Properties window appears. The command you define
in this window will be executed prior to the parent command.

g. Define the command type, and type the name and command values. Define
any parameters or return values as appropriate.

Click OK to save these parameters and close the window. You will be
returned to the parameters window for the parent command.

8. If you want to associate a command to a parent command in order to provide
the parent command with a return value:

a. Define a command.

b. Under Parameter, click Add.

The Parameters window appears.

c. In the Name field, type the name of the command parameter.

Determining Where to Define a Command

2-10 Oracle Scripting Developer’s Guide

d. In the Value field, type the value for the parameter.

If this parameter is required by a Java method, this is identical to the value
referenced in the method signature (case-sensitive).

If a string, type the literal string value.

If the value is a boolean, type true or false.

e. Select Add Value as Command.

The Parameters window will expand.

f. From the Value field, click Edit.

A child Command Properties window appears. The command you define
in this window will be executed prior to the parent command.

g. Define the command type, and type the name and command values. Define
any parameters as appropriate.

h. In the Return Value area, click Edit.

The Parameters window appears. These are return value parameters.

i. Enter return value parameters as required.

In the Name field, enter any name. This will identify the constant
command.

In the Value field, enter the value you wish to be passed as the return value.

Click OK to save these parameters and close the window. You will be
returned to the parameters window for the parent command.

9. In the Command Properties window, enter the appropriate properties for the
desired command type. Refer to instructions for a specific command type for
detailed information.

10. Save your work.

See Also
Section 2.1 "Customization and Support"

Section 2.3 "Best Practice Java Methods"

Section 2.5 "Performing Advanced Graphical Script Tasks"

Best Practice Java Methods

Customizing Oracle Scripting 2-11

2.3 Best Practice Java Methods
Oracle Applications release 11.5.6 and later includes a library of "best practice" Java
methods written specifically for Oracle Scripting. Best practice Java methods
provide the ability to incorporate frequently requested functionality into Script
Author graphical scripts without writing new Java code.

Using best practice Java methods, you can:

■ Set, enable, or disable shortcut buttons in the Shortcut button bar (agent
interface)

■ Start or stop a timer in the script information area (agent interface)

■ Validate a user’s input or response using established validation routines (Web
and agent interfaces)

■ Check for a null value to determine whether to perform a query or request
input from user (Web and agent interfaces)

■ Obtain the time of day to dynamically generate greetings or route script flow to
specified paths (Web and agent interfaces)

These are only a few examples. For details, refer to the description of each method
below, grouped by class.

The answer validation commands automatically associated with a question within a
panel by selecting options in the Define Question Detail wizard window also access
best practice Java methods (from the NodeValidation class).

This section includes the following topics:

■ Section 2.3.1 "Overview of Best Practice Java Methods"

■ Section 2.3.2 "Deciding Between Best Practice and Custom Java"

■ Section 2.3.3 "ScriptUtil Java Methods"

■ Section 2.3.4 "NodeDefault Java Methods"

■ Section 2.3.5 "NodeValidation Java Methods"

■ Section 2.3.6 "Referencing Best Practice Java in a Command"

2.3.1 Overview of Best Practice Java Methods
These Java methods are organized into three separate Java classes, grouped by
function. These include:

Best Practice Java Methods

2-12 Oracle Scripting Developer’s Guide

■ ScriptUtil Java Methods

■ NodeDefault Java Methods

■ NodeValidation Java Methods

The best practice Java methods are included as compiled Java class files in
APPS.ZIP, a compressed archive containing Java classes for Oracle Applications. For
enterprises certified to execute Oracle Scripting in the caching architecture, as of
release 11.5.7 these classes are also included in IESSERVR.JAR.

To use best practice Java methods, simply create a Script Author command in a
script, referencing the best practice Java method and any required parameters or
return values.

Oracle Corporation does not make source code available. If you wish to understand
the parameters used in these Java methods, refer to the descriptive tables for each of
the three best practice Java classes below.

As discussed in Section 1.2.1.4 "Standard Java Naming and Usage Conventions",
some of the best practice methods listed herein do not adhere to standard Java
naming and usage conventions. These will be updated in the near future. When
they are, the older best practice Java methods will be decremented. To ensure
compatibility, replaced methods will continue to be included in shipped code for a
period of time.

Apache Mid-Tier Architecture
Oracle Scripting implementations using the Apache mid-tier architecture can use
best practice Java methods more easily than custom Java. In this architecture, the
JVM on the Apache Web server references the JSERV.PROPERTIES file on the Web
server to locate and identify all Java classes required. Since APPS.ZIP is referenced
by this file, all best practice Java commands can be accessed without the
requirement to create, compile, or upload custom Java. This speeds development
and maintenance, provides for code reuse and eliminates potential Java coding
errors for commonly required Scripting Engine functionality.

Caching Architecture
Enterprises upgrading previous Oracle Scripting implementations using the caching
architecture may also use best practice Java methods to support Script Author
scripts.

As of release 11.5.7, the Oracle Scripting best practice Java methods are included in
IESSERVR.JAR, one of the three base Java archive files that comprise the Oracle
Scripting product. The inclusion of the three best practice classes in IESSERVR.JAR

Best Practice Java Methods

Customizing Oracle Scripting 2-13

ensures accessibility for enterprises using the caching architecture of Oracle
Scripting.

See Also
■ Section 2.3.2 "Deciding Between Best Practice and Custom Java"

■ Section 2.3.3 "ScriptUtil Java Methods"

■ Section 2.3.4 "NodeDefault Java Methods"

■ Section 2.3.5 "NodeValidation Java Methods"

■ Section 2.3.6 "Referencing Best Practice Java in a Command"

2.3.2 Deciding Between Best Practice and Custom Java
Typically, when writing custom Java methods to support a script, you must compile
your custom Java source code, combine one or more compiled classes into a JAR
file, and store the JAR file on the server.

Users of the Scripting Administration console and the Script Author Java applet can
deploy custom JAR files to the applications database. This greatly simplifies the use
of custom Java code.

If using the older, stand-alone Script Author Java application instead of the
integrated applet, then custom JAR files cannot be stored in the database. Based on
the architecture in which you are executing scripting, you must then reference the
class path of your custom Java in a configuration file (in the JSERV.PROPERTIES file
on the Apache Web server for Apache Mid-Tier Architecture operations, or in the
APPSWEB.CFG file on the applications server if using the Caching Architecture).
Finally, using the Script Author, you must reference each specific Java method in the
command field of a Java command.

In contrast, the best practice Java methods are included in APPS.ZIP. The class path
for APPS.ZIP is already referenced in the appropriate configuration file. If using
best practice Java methods, you do not need to generate, test, or compile Java code,
nor do you need to deploy best practice Java code to the apps server or reference the
class path in a configuration file. You need only reference each specific Java method
in the command field of a Java command using the Script Author.

Note: Best Practice Java methods are not available to users of the
caching architecture prior to release 11.5.7. If using this architecture
you must upgrade to release 11.5.7 or later to use best practice Java.

Best Practice Java Methods

2-14 Oracle Scripting Developer’s Guide

Use Best Practice Java Methods with or Instead of Custom Code

If existing best practice Java methods meet all your needs for extending a script, you
can use them exclusively. Doing so will eliminate the need to deploy custom code to
the database and map the JAR files to a script. Restricting custom Java to the use of
best practice Java methods for users of the older stand-alone Script Author
application will eliminate the need to write, test, compile and deploy custom Java
and to modify JSERV.PROPERTIES or APPSWEB.CFG configuration files to identify
the class path of the JAR files on the applications server.

You can also use custom code in combination with best practice Java methods in a
single script. As long as each command is appropriately referenced, any
combination is supported.

See Also
■ Section 2.3.1 "Overview of Best Practice Java Methods"

■ Section 2.3.3 "ScriptUtil Java Methods"

■ Section 2.3.4 "NodeDefault Java Methods"

■ Section 2.3.5 "NodeValidation Java Methods"

■ Section 2.3.6 "Referencing Best Practice Java in a Command"

Caution: Do not, under any circumstances, add custom code to
APPS.ZIP. Customization of APPS.ZIP is not supported, and could
result in loss of function not only for Scripting but for other Oracle
Applications.

Best Practice Java Methods

Customizing Oracle Scripting 2-15

2.3.3 ScriptUtil Java Methods

Method Name Description Return Type Parameters

jumpToShortcut Jumps user to group containing the shortcut
property shortcutName.

Prerequisite: This method requires a group
object on the Script Author canvas
containing a shortcut value. This group is
the destination of the jump.

Replaces method JumpToShortcut. Changes
include:

■ Method name changed to begin with
lower case to follow standard Java
method naming conventions.

■ Parameter ShortcutName changed to
shortcutName to follow standard
parameter naming conventions.

void Proxy

String shortcutName

JumpToShortcut Decremented.

Jumps user to group containing the shortcut
property ShortcutName.

Prerequisite: This method requires a group
object on the Script Author canvas
containing a shortcut value. This group is
the destination of the jump.

void Proxy

String ShortcutName

Best Practice Java Methods

2-16 Oracle Scripting Developer’s Guide

startTimer Starts an interaction timer (displays in
Agent interface only). Use this method to
start an interaction timer in the script
information area at runtime. If timing the
full interaction, this method must be called
prior to the first panel.

Note: Cannot be used as pre-action to the
global script.

Prerequisite: Requires a timer to be defined
as a data element in the script information
area (static panel).

Replaces method StartTimer. Changes
include:

■ Method name changed to begin with
lower case to follow standard Java
method naming conventions.

■ Parameter TimerName changed to
timerName to follow standard
parameter naming conventions.

void Proxy

String timerName

StartTimer Decremented.

Starts an interaction timer (displays in
Agent interface only). Use this method to
start an interaction timer in the script
information area at runtime. If timing the
full interaction, this method must be called
prior to the first panel.

Note: Cannot be used as pre-action to the
global script.

Prerequisite: Requires a timer to be defined
as a data element in the script information
area (static panel).

void Proxy

String TimerName

Method Name Description Return Type Parameters

Best Practice Java Methods

Customizing Oracle Scripting 2-17

stopTimer Stops count on interaction timer (displays
in Agent interface only). Use this method to
stop the count on an active interaction timer
in the script information area at runtime.
This will have no negative effect if invoked
when a timer is not active.

Prerequisite: Requires a timer to be defined
as a data element in the script information
area (static panel).

Replaces method StopTimer. Changes
include:

■ Method name changed to begin with
lower case to follow standard Java
method naming conventions.

■ Parameter TimerName changed to
timerName to follow standard
parameter naming conventions.

void Proxy

String timerName

StopTimer Decremented.

Stops count on interaction timer (displays
in Agent interface only). Use this method to
stop the count on an active interaction timer
in the script information area at runtime.
This will have no negative effect if invoked
when a timer is not active.

Prerequisite: Requires a timer to be defined
as a data element in the script information
area (static panel).

void Proxy

String TimerName

resetTimer Resets to 0 seconds the count on an active
interaction timer in the Agent interface. Has
no effect if invoked when a timer is not
active.

Prerequisite: Requires a timer to be defined
as a data element in the script information
area (static panel).

Note lower case initial capitalization of
parameter timerName, following standard
parameter naming conventions.

void Proxy

String timerName

getUser Returns the Oracle Applications user name
of the individual running the script in a
string called "user."

String Proxy

Method Name Description Return Type Parameters

Best Practice Java Methods

2-18 Oracle Scripting Developer’s Guide

See Also
■ Section 2.3.1 "Overview of Best Practice Java Methods"

■ Section 2.3.2 "Deciding Between Best Practice and Custom Java"

■ Section 2.3.4 "NodeDefault Java Methods"

■ Section 2.3.5 "NodeValidation Java Methods"

■ Section 2.3.6 "Referencing Best Practice Java in a Command"

2.3.4 NodeDefault Java Methods

checkReturnStatus Boolean expression that checks to see if the
status of a command returns a value of "S"
(indicating success). If S, returns "true";
otherwise, returns "false."

boolean Proxy

getCursorColumn Returns the corresponding value of the
column in the cursor, based on the index
that is passed in the parameter "i" (an
integer).

String Proxy

integer "i"

findAndSetCurrentRecord Finds the current record in the scripting
cursor and sets the pointer to that record,
based on what was selected in the question.
By default, any access to the scripting
cursor points to the first record. After
calling this method, any future access to the
cursor record will return values from the
new row where the pointer is located.

Parameter rowid changed to rowID to
follow standard parameter naming
conventions.

void Proxy

String rowId

String columnName

setCursorColumnToBB Sets the corresponding value of the cursor
column specified in parameter
"columnName" to the Blackboard variable
specified in the parameter "key".

void Proxy

String key

String columnName

getIndexforColumn This method returns the numeric index (0,1,
2....) in the cursor for the columnName
parameter passed.

int Proxy

String columnName

Method Name Description Return Type Parameters

Best Practice Java Methods

Customizing Oracle Scripting 2-19

See Also
■ Section 2.3.1 "Overview of Best Practice Java Methods"

■ Section 2.3.2 "Deciding Between Best Practice and Custom Java"

■ Section 2.3.3 "ScriptUtil Java Methods"

Method Name Description Return Type Parameters

getTimeOfDayForGreeting Returns the string "morning", "afternoon", or
"evening" derived from the current time
(based on SYSDATE) so that you can set up
a greeting as an embedded value.

String

getTimeOfDayForClosing Returns the string "day", "afternoon", or
"night" derived from the current time (based
on SYSDATE) so that you can set up a
closing using an embedded value.

String

currentDate Returns current date in format
MM/dd/yyyy.

String

currentTime Returns the time in format hh:mm:ss
am/pm.

String

setStaticInfo Allows you to set values in the script
information area (displays in Agent
interface only). Requires you to pass the
name of the field (fieldID) and its value
(value) as parameters.

Replaces method SetStaticInfo. Changes
include:

■ Method name changed to begin with
lower case to follow standard Java
method naming conventions.

■ Parameter FieldID changed to fieldID
and parameter Value changed to value
to follow standard parameter naming
conventions.

void Proxy

String fieldID

String value

SetStaticInfo Decremented.

Allows you to set values in the Script
Information panel (displays in Agent
interface only). Requires you to pass the
name of the field (FieldID) and its value
(value) as parameters.

void Proxy

String FieldID

String value

Best Practice Java Methods

2-20 Oracle Scripting Developer’s Guide

■ Section 2.3.5 "NodeValidation Java Methods"

■ Section 2.3.6 "Referencing Best Practice Java in a Command"

2.3.5 NodeValidation Java Methods

Method Name Description Return Value Parameters

validateForDateFormat Boolean expression that checks for a date
in format MM/dd/yyyy. If a different
format is found, returns an error message
asking the user to enter the date in the
correct format.

Private static parameter dateFormat
changed to DATE_FORMAT to follow
standard parameter naming conventions.

boolean String answer

validateForTimeFormat Boolean expression that checks for time in
format hh:mm:ss am/pm. Returns an
error if not in the correct format.

Private static parameter timeFormat
changed to TIME_FORMAT to follow
standard parameter naming conventions.

boolean String answer

validateDateNotInPast Boolean expression that checks to see that
the date entered (in format
MM/dd/yyyy) is in the future. If false,
provides an error message to the user with
a prompt to enter a valid date not in the
past.

Private static parameter dateFormat
changed to DATE_FORMAT to follow
standard parameter naming conventions.

Changed error message from "Please enter
a valid date/time..." to "Please enter a
valid date...".

boolean String answer

validateIntegerEntered Boolean expression that checks to see if a
blackboard key has an invalid value.
Returns "true" (indicating an invalid
value) if blackboard value is null, is a
string of "-1" (typically indicating an
exception), is blank, or contains only
spaces. Otherwise returns "false"
(indicating a valid value).

boolean String answer

String label

Best Practice Java Methods

Customizing Oracle Scripting 2-21

validateIntegerInRange Boolean expression that allows you to
enter a minimum and maximum range,
and subsequently checks that the user's
entry is within that range.

boolean String answer

String minStr

String maxStr

String label

validateRequiredField Boolean expression that checks to see if a
value is entered for the designated field. If
null or empty, provides an error message
to the user with a prompt to enter a value
for that field.

boolean String answer

String label

checkNullValue Boolean expression that checks to see if a
blackboard key has a null value. Returns
"true" if null; otherwise returns "false."

boolean String answer

checkInvalidValue Boolean expression that checks to see if a
blackboard key has an invalid value.
Returns "true" (indicating an invalid
value) if blackboard value is null, is a
string of "-1" (typically indicating
NotInInteractionException or
InvalidCursorException), is blank, or is a
space. Otherwise returns "false."

boolean String answer

String bbkey

enableButton Enables a button on the shortcut bar
(displays in Agent interface only).

Replaces method EnableButton. Changes
include:

Method name changed to begin with
lower case to follow standard Java method
naming conventions.

Parameter ButtonID changed to buttonID
to follow standard parameter naming
conventions.

void String answer

buttonID

EnableButton Decremented.

Enables a button on the shortcut bar
(displays in Agent interface only).

void String answer

ButtonID

Method Name Description Return Value Parameters

Best Practice Java Methods

2-22 Oracle Scripting Developer’s Guide

See Also
■ Section 2.3.1 "Overview of Best Practice Java Methods"

■ Section 2.3.2 "Deciding Between Best Practice and Custom Java"

■ Section 2.3.3 "ScriptUtil Java Methods"

■ Section 2.3.4 "NodeDefault Java Methods"

■ Section 2.3.6 "Referencing Best Practice Java in a Command"

2.3.6 Referencing Best Practice Java in a Command
In Script Author graphical scripts, commands are associated with a branch or with
an object (panel, group, block, or the entire script object itself). Commands are
defined in the Command Properties window and execute the specified action at
runtime, affecting the objects to which they are associated.

Use this procedure to define a Java command in the Script Author that references
best practice Java methods included with Oracle Scripting release 11.5.6 and later.

Prerequisites
■ Script Author release 11.5.6 or later.

■ Oracle Applications release 11.5.6 or later.

■ Identify the name and location of the appropriate Java method you wish to
reference in the command.

disableButton Disables a button on the shortcut bar
(displays in Agent interface only).

Replaces method DisableButton. Changes
include:

Method name changed to begin with
lower case to follow standard Java method
naming conventions.

Parameter ButtonID changed to buttonID
to follow standard parameter naming
conventions.

void String answer

buttonID

DisableButton Decremented.

Disables a button on the shortcut bar
(displays in Agent interface only).

void String answer

ButtonID

Method Name Description Return Value Parameters

Best Practice Java Methods

Customizing Oracle Scripting 2-23

Steps
1. Using the Script Author, open a new or existing graphical script.

2. Navigate to the object for which you wish to associate a command.

3. Open a Command window.

4. From the Command Type list, select Java Command.

5. In the Name field, enter a unique name for this Java command.

6. In the Command field, enter all of the following, concatenated and with no
spaces:

a. The fully qualified Java class name, including package path.

b. Two colons.

c. The specific Java method you are referencing for this command.

Thus, if the class you are referencing is in the package
oracle.apps.ies.bestpractice, the class is named SampleClass, and the method is
SampleMethod, the full value to enter in the Command field is:

oracle.apps.ies.bestpractice.SampleClass::SampleMethod

7. If the signature for the desired Java method indicates that parameters are
required, do the following:

a. Under Parameters, click Add.

b. In the Name field, type the name of the command parameter.

If the method includes the ServerProxyBean as a parameter, type "Proxy"
(case-sensitive) in the Name field. No other values are required for this
parameter.

c. In the Value field, type the case-sensitive value for the parameter referenced
in the Java signature.

If a string, type the literal string value.

If the value is a boolean, type true or false.

d. If you want to add the value as the return value of an executed command:

Select Add Value as Command.

From the Value field, click Edit.

Passing Parameters to the Web Interface

2-24 Oracle Scripting Developer’s Guide

Enter the parameters for the new command, save, and click OK to save
the command.

e. Click OK to save the values entered as parameters.

8. If you want to add a return value to the top-level command:

a. Click Edit In the Return Value area.

The Parameters window appears.

b. Enter appropriate return value parameters, save, and exit.

9. Click OK to save the values entered in this command.

10. Save your work. When deployed, the specified Java method will be called at
runtime.

See Also
Section 2.1 "Customization and Support"

Section 2.2 "Determining Where to Define a Command"

Section 2.5 "Performing Advanced Graphical Script Tasks"

2.4 Passing Parameters to the Web Interface
%% NEW for 11.5.9 FP-Q

When executing scripts in the Scripting Engine Web interface, you can pass
parameters into an Oracle Scripting session from external applications. These
parameters are stored in the Scripting blackboard, and are available for use
throughout the script session. This method is appropriate regardless of whether you
run scripts as surveys, or from a self-service Web application such as Oracle
iSupport.

Using methods appropriate to your source application, pass each parameter to the
Scripting blackboard by concatenating each key and value to the runtime survey
URL required to initiate a script session.

After the last parameter required as part of the URL to initiate the script transaction,
pass in values from external applications by concatenating an ampersand (&), the
key name, an equal sign (=), and the key value to the URL required to initiate the
survey.

Thus, if you want to pass an Oracle iSupport transaction ID (for example, 999) to a
Web script launched from iSupport, you can append to the survey URL the key

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-25

value pair transaction_id=999. This will then be accessible as a blackboard value
from the script with and the key/value pair (transaction_id, 999).

Initial URL May Differ
The initial runtime survey URL used in your environment may differ based on
method of execution for your environment. For example:

■ The initial JSP page called may be IESSVYMENUBASED.JSP if hosted on a
Web-based application.

■ The initial JSP page called may be IESSVYMAIN.JSP if executed as a survey.

■ Each Scripting Engine transaction using the Web interface requires at least one
parameter, dID (deployment ID). List-based surveys also require a unique rID
(respondent ID) parameter.

Syntax and Examples
The appropriate syntax follows. This includes two additional parameters (Keyname
1 and Keyname 2):

http://<hostname>:<port>/OA_HTML/<hosted or stand-alone survey jsp>?<Deployment
ID>&<Respondent ID>&<Keyname1>=<Value1>&<Keyname2>=<Value2>

An example of a list-based stand-alone survey URL passing a customer ID of 12345
and a customer name of Smith appears as follows:

http://server1.company.com:7777/OA_HTML/iessvymain.jsp?dID=263&CUSTOMER_
ID=12345&CUSTOMER_NAME=Smith

An example of a hosted survey URL passing a Party ID of 1000 and a customer
name of Chan appears as follows:

http://server2.company.com:8888/OA_HTML/iessvymenubased.jsp?dID=374&PARTY_
ID=1000&CUSTOMER_NAME=Chan

The limit to parameters that can be passed is restricted by the Web browser's
supported limit of URL characters.

2.5 Performing Advanced Graphical Script Tasks
This section describes various tasks you may wish to perform to provide additional
functionality to a script at runtime. Some tasks involve manipulating aspects of the
Scripting Engine agent interface. As such, these tasks are not applicable to scripts

Performing Advanced Graphical Script Tasks

2-26 Oracle Scripting Developer’s Guide

developed for execution in the Web interface. If a task is applicable to the agent
interface only, this information is clearly described.

This section includes the following topics:

Section 2.5.1 "Defining a Shortcut Button"

Section 2.5.2 "Defining Shortcuts"

Section 2.5.3 "Enabling the Agent Interface Disconnect Button"

Section 2.5.4 "Enabling or Disabling a Shortcut Button"

Section 2.5.5 "Defining the Script Information Area"

Section 2.5.6 "Defining a Constant Command"

Section 2.5.7 "Using the Indeterminate Branch"

Section 2.5.8 "Using Iterating Parameters"

Section 2.5.9 "Querying the Database and Displaying the Results"

Section 2.5.10 "Replacing a Panel with a Java Bean"

See Also
Section 2.1 "Customization and Support"

Section 2.2 "Determining Where to Define a Command"

Section 2.3 "Best Practice Java Methods"

2.5.1 Defining a Shortcut Button
Shortcut buttons display in the agent interface at runtime, and present as a
horizontal row of buttons immediately above any panels rendered. Clicking on a
shortcut button executes any Script Author command associated with the button.
For example, you can jump in the script to a destination group anywhere in the
script (identified by the Shortcut property of a group). A button can also call any
other Script Author command For example, a button can be programmed to execute
the Forms Goto URL command to access a web page in a new browser window.

This section includes the following topics:

Section 2.5.1.1 "Defining a Shortcut Button to Execute a Command"

Section 2.5.1.2 "Defining a Shortcut Button to Jump to a Group"

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-27

See Also
Section 2.5.2 "Defining Shortcuts"

Section 2.5.3 "Enabling the Agent Interface Disconnect Button"

Section 2.5.4 "Enabling or Disabling a Shortcut Button"

Section 2.5.5 "Defining the Script Information Area"

Section 2.5.6 "Defining a Constant Command"

Section 2.5.7 "Using the Indeterminate Branch"

Section 2.5.8 "Using Iterating Parameters"

Section 2.5.9 "Querying the Database and Displaying the Results"

Section 2.5.10 "Replacing a Panel with a Java Bean"

2.5.1.1 Defining a Shortcut Button to Execute a Command
Use this procedure to define a Shortcut button in the button bar to execute any
Script Author command.

Steps
1. Using the Script Author, open a new or existing graphical script.

2. Double-click on an empty area of the canvas, or select Script Properties from
the File menu, to access properties of the global script object.

3. In the script properties menu, select the Shortcut Panel attribute.

Shortcut Panel properties appear.

4. Click Add.

The Shortcut Info Entry window appears.

5. Enter Shortcut information as appropriate.

a. In the ID field, enter a unique identification name for this shortcut.

b. In the Label field, enter label that you want to appear on the shortcut
button.

c. In the Tooltip field, enter the contents of the tooltip, which will appear in
the Scripting Engine agent interface when the agent’s cursor rests on the
button.

d. On the Command line, click Edit.

Performing Advanced Graphical Script Tasks

2-28 Oracle Scripting Developer’s Guide

The Command Properties window appears.

6. Enter the appropriate information to reference the command you want to
execute at runtime when the Shortcut button is clicked.

7. Click OK to save the Command Properties and close the window.

8. To enable the Shortcut button upon the launch of the script, select Enabled.

A check appears, indicating the button is enabled.

9. If you want to save your work and continue, click Apply.

10. To add additional Shortcut buttons, click Add in the Shortcut Panel properties
and repeat the required steps.

11. Click OK to save your work and exit the Shortcut Info Entry window.

See Also
Section 2.5.1.2 "Defining a Shortcut Button to Jump to a Group"

2.5.1.2 Defining a Shortcut Button to Jump to a Group
Use this procedure to define the Java code and a shortcut button to jump to a group.
This can be accomplished using the JumpToShortcut Java method in the best
practice ScriptUtil class, or by writing a custom Java method using the
jumpToShortcut Scripting API.

Sample Code
The following are sample Java method establishes a destination group by its
Shortcut property.

public void shortcut1(ServerProxyBean pb, String DestinationGroup)
 {
 try
 {
 pb.jumpToShortcut(DestinationGroup);
 }
 catch (Exception e)
 {

Note: You may also use Java command to enable a Shortcut
button at a later time during the flow of the script, or to disable a
Shortcut button at a specified point in the flow.

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-29

 e.printStackTrace();
 }
 }

■ In this example, Shortcut 1 is the method to associate with a Shortcut button.

■ When shortcut1 is evaluated, the flow of the script will jump to the group with
the Shortcut name DestinationGroup.

■ The first panel in that group will display at runtime.

Prerequisites
■ Create the group intended as the destination of the jump. Ensure you provide a

Shortcut property. The group must be syntactically correct:

■ It must contain a Start node, Termination node and appropriate branching
between all objects.

■ Any panels in the group must have answers defined. If distinct branching is
used, one answer definition in that panel must be set to trigger as the
default for distinct branching.

■ Write the code for the Java method, following the guidance above. The method
must name the destination group by its Shortcut name.

Steps
1. Using the Script Author, open a new or existing graphical script.

2. Double-click on an empty area of the canvas, or select Script Properties from
the File menu, to access properties of the global script object.

3. In the script properties menu, select the Shortcut Panel attribute.

Shortcut Panel properties appear.

4. Click Add.

The Shortcut Info Entry window appears.

5. Enter Shortcut information as appropriate.

a. In the ID field, enter a unique identification name for this shortcut.

b. In the Label field, enter label that you want to appear on the shortcut
button.

Performing Advanced Graphical Script Tasks

2-30 Oracle Scripting Developer’s Guide

c. In the Tooltip field, enter the contents of the tooltip, which will appear in
the Scripting Engine agent interface when the agent’s cursor rests on the
button.

d. On the Command line, click Edit.

The Command Properties window appears.

6. From the Command Type list, select Java Command.

7. In the Name field, enter a unique name for this Java command.

8. To define a shortcut button using the JumpToShortcut method in the best
practices Java:

a. In the Command field, type
oracle.apps.ies.bestpractice.ScriptUtil::JumpToShortcut

b. Under Parameters, click Add.

The Parameters window appears.

c. In the Name field, type Proxy.

No other values are required for the ProxyServerBean parameter.

d. Click OK to save the Proxy parameter and close the window.

e. Under Parameters, click Add.

The Parameters window appears.

f. In the Name field, type the name of the command parameter.

Type the value ShortcutName. This is the string used as a parameter by the
JumpToShortcut method.

g. In the Value field, type the value of the shortcut property associated with
the group you wish this button to jump to.

For example, to jump to a group with the shortcut property Group1, type
Group1 in the Value field.

h. Click OK to save the Proxy parameter and close the window.

Caution: This field should contain the value of the Shortcut
property, not the name of the group.

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-31

9. To define a shortcut button using a custom Java method invoking the
jumpToShortcut API as in the sample code above, then do the following:

a. In the Command field, type the fully qualified name of the custom Java
class, two colons, and the Java method, concatenated and without spaces.

For example, assuming the method in the example above is in the class
CustomCode and is appropriately deployed to the database in the path
<JAVA_TOP>/ies_custom, type in the command field <JAVA_TOP>.ies_
custom.CustomCode::shortcut1.

b. Under Parameters, click Add.

The Parameters window appears.

c. In the Name field, type Proxy.

No other values are required for the ProxyServerBean parameter.

d. Click OK to save the Proxy parameter and close the window.

Since the value of the shortcut group is determined by the custom Java
method, no additional parameters are required unless required by the
custom method.

10. Click OK to save the Command Properties and close the window.

11. To enable the shortcut button upon the launch of the script, select Enabled.

A check appears, indicating the button is enabled.

12. If you want to save your work and continue, click Apply.

13. To add additional Shortcut buttons, click Add in the Shortcut Panel properties
and repeat the required steps.

14. Click OK to save your work and exit the Shortcut Info Entry window.

References
■ In order for a Shortcut button to function, the script must have a group with the

appropriate Shortcut property. See Section 2.5.2 "Defining Shortcuts".

Note: You may also use Java command to enable a Shortcut
button at a later time during the flow of the script, or to disable a
Shortcut button at a specified point in the flow.

Performing Advanced Graphical Script Tasks

2-32 Oracle Scripting Developer’s Guide

■ In order to enable or disable a shortcut button, see Section 2.5.4 "Enabling or
Disabling a Shortcut Button".

See Also
Section 2.5.1.1 "Defining a Shortcut Button to Execute a Command"

2.5.2 Defining Shortcuts
A Shortcut is the property of a Group in the Script Author. Using Java commands,
the flow of a script in runtime can jump to a "target" group containing a Shortcut of
a specified name. The group contains the panels that are the destination that result
when clicking the Shortcut button. Three typical uses of a Shortcut are to associate a
target for a Shortcut button in the Shortcut button bar (for the agent interface only),
to enable the Disconnect button (for the agent interface only), and to associate a
target for a group containing specific functionality which must be accessed after
meeting a specified condition in a script (for either runtime interface).

Use this procedure to define a group as the target of a jump.

Prerequisites
Insert a group.

Steps
1. Using the Script Author, open a new or existing graphical script.

2. In the tool palette, click the Toggle Select Mode tool.

3. On the canvas, double-click a group.

The Properties window appears.

4. In the Group tree, select Shortcut.

5. In the Shortcut field, type the name of the shortcut.

For example, to define a group as the target after clicking Disconnect in the
agent interface, type WrapUpShortcut.

6. Click Apply to save your work and continue, or click OK to save your work
and exit the Properties window for the group.

If you want to jump to the Shortcut in runtime from a Shortcut button, define
the Shortcut button.

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-33

If you want to jump to the Shortcut in runtime based on values or other criteria,
define that criteria and associate the criteria with one or more commands in the
script.

If you created this group to enable the Disconnect button in the agent interface,
you must ensure the subgraph created by the group is appropriately
terminated, with (at minimum) a default branch from the Start node to a
Terminal node.

References
Section 2.5.3 "Enabling the Agent Interface Disconnect Button"

See Also
Section 2.5.1 "Defining a Shortcut Button"

Section 2.5.3 "Enabling the Agent Interface Disconnect Button"

Section 2.5.4 "Enabling or Disabling a Shortcut Button"

Section 2.5.5 "Defining the Script Information Area"

Section 2.5.6 "Defining a Constant Command"

Section 2.5.7 "Using the Indeterminate Branch"

Section 2.5.8 "Using Iterating Parameters"

Section 2.5.9 "Querying the Database and Displaying the Results"

Section 2.5.10 "Replacing a Panel with a Java Bean"

2.5.3 Enabling the Agent Interface Disconnect Button
The Disconnect button appears at the bottom right of the Scripting Engine agent
interface, in the outermost frame of the window. The purpose of this button is to
allow agents using Oracle Scripting to bring the flow of the script to a close from
any point in the script. When this button is clicked at runtime, the agent is "jumped"
in the flow of the script to a specified destination group.

For scripts created using the Script Wizard, the Disconnect button is created
automatically, by placing a group named Disconnect on the canvas. This subgraph
represented by this group contains default branching to a Termination node, and
does not contain any panels. The Shortcut property contains the WrapUpShortcut
designation.

Performing Advanced Graphical Script Tasks

2-34 Oracle Scripting Developer’s Guide

For graphical scripts, the Disconnect button is not enabled until you create a
destination group (or designate an existing group as the destination group), provide
the appropriate content for that group (optional objects and mandatory
termination), and provide the appropriate Shortcut property designation.

The destination group routed to from the Disconnect button must:

■ Be placed on the root graph of the script.

■ Contain the shortcut name WrapUpShortcut (this is case-sensitive).

■ Be properly terminated on the root graph, with a default branch leading to a
Termination node on the root graph.

■ Be properly terminated in the child graph within the destination group.

To immediately end the script session, include no panels in the destination group.
Simply add a Termination node and default branching. Alternatively, to capture
information required for every session, include panels, blocks, or child groups
within the destination group. For example, for an inbound script, you can include a
panel that thanks the user for calling, and inquiring how the caller heard about this
particular promotion. For outbound scripts, you may wish to establish callback
information in the group.

Based on the approach taken (including wrap-up information, or immediately
ending the script session), this destination group is generally referred to either as
the WrapUp group or the Disconnect group.

Use this procedure to define a group as the destination target for when an agent
clicks Disconnect in runtime.

Prerequisites
None

Steps
1. Using the Script Author, open a new or existing graphical script.

2. If you want to create a new group as the target destination of the Disconnect
button, then do the following:

Note: ’Unlike other instances of jumping the end user to a
specified group, enabling the Disconnect button does not require
any Java to be created.

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-35

a. In the tool palette, click the Group Insertion Mode tool.

b. On the root graph of the canvas, click where you want to insert the group.

c. In the tool palette, click the Toggle Select Mode tool.

d. Double-click the group you just created.

The Properties window appears.

3. If you want to designate an existing group as the target of the Disconnect
button, then do the following:

a. In the tool palette, click the Toggle Select Mode tool.

b. On the root graph of the canvas, double-click a group.

The Properties window appears.

4. In the Group tree, select Properties.

Properties field for the group display.

5. In the Name field, type a meaningful name.

For example: if clicking Disconnect at runtime must immediately end the
current script session, type Disconnect; if clicking Disconnect at runtime must
result in displaying panels wrapping up the transaction, type WrapUpGroup

6. Click Apply to save your work and continue.

7. In the Group tree, select Shortcut.

8. In the Shortcut field, type WrapUpShortcut.

9. Click OK to save your work and exit the Properties window for the group.

10. Click OK to save your work and exit the Properties window for the group.

11. Click OK to save your work and exit the Properties window for the group.

12. If the destination group on the root graph is not yet connected via default
branching to a Termination node, do the following:

a. In the tool palette, click the Termination Point Insertion Mode tool.

b. On the root graph of the canvas, click where you want to insert the
Termination node.

Note: This value is case-sensitive and must be entered precisely.

Performing Advanced Graphical Script Tasks

2-36 Oracle Scripting Developer’s Guide

a. In the tool palette, click the Default Branch Mode tool.

When the pointer is over the canvas, the pointer is a cross hair (+).

b. On the canvas, drag the pointer from the destination group to the
Termination node.

13. If clicking Disconnect at runtime must immediately end the current script
session, do the following:

a. In the tool palette, click the Toggle Select Mode tool.

b. On the root graph of the canvas, click once to select the group.

The Properties window appears.

c. In the tool palette, click the Go down into child graph tool.

The subgraph representing the target group appears.

d. In the tool palette, click the Termination Point Insertion Mode tool.

e. On the canvas, click where you want to insert the Termination node.

a. In the tool palette, click the Default Branch Mode tool.

When the pointer is over the canvas, the pointer is a cross hair (+).

b. On the canvas, drag the pointer from the Start node to the Termination
node.

c. In the tool palette, click the Go up to parent graph tool.

The canvas refreshes, displaying the root graph.

The subgraph representing the target group appears.

14. If clicking Disconnect at runtime must result in displaying panels wrapping up
the transaction, and if this functionality does not already exist in the WrapUp
group, do the following:

a. In the tool palette, click the Toggle Select Mode tool.

b. On the root graph of the canvas, click once to select the group.

The Properties window appears.

c. In the tool palette, click the Go down into child graph tool.

The subgraph representing the target group appears.

d. Add panels, groups, or blocks appropriately to provide the desired
functionality for the WrapUp group at runtime.

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-37

e. In the tool palette, under the last appropriate object, click the Termination
Point Insertion Mode tool.

f. On the canvas, click where you want to insert the Termination node.

a. In the tool palette, click the Default Branch Mode tool.

When the pointer is over the canvas, the pointer is a cross hair (+).

b. On the canvas, drag the pointer from the last appropriate object in your
WrapUp group to the Termination node.

c. In the tool palette, click the Go up to parent graph tool.

The canvas refreshes, displaying the root graph.

The subgraph representing the target group appears.

15. Save your work.

See Also
Section 2.5.1 "Defining a Shortcut Button"

Section 2.5.4 "Enabling or Disabling a Shortcut Button"

Section 2.5.5 "Defining the Script Information Area"

Section 2.5.6 "Defining a Constant Command"

Section 2.5.7 "Using the Indeterminate Branch"

Section 2.5.8 "Using Iterating Parameters"

Section 2.5.9 "Querying the Database and Displaying the Results"

Section 2.5.10 "Replacing a Panel with a Java Bean"

2.5.4 Enabling or Disabling a Shortcut Button
Upon defining a Shorctut button, you can choose whether to enable it immediately
or at a later point in the script using a Java command. In the same manner, at any
point in the script, you can use a Java command to disable a Shortcut button.

Use the following procedure to enable or disable a shortcut button using the best
practice Java methods enableShortcutButton and disableShortcutButton in the class
ScriptUtil.

Performing Advanced Graphical Script Tasks

2-38 Oracle Scripting Developer’s Guide

Prerequisites
■ For this procedure to have any effect, a Shortcut button must be programmed to

display in the Shortcut button bar in the agent interface at runtime.

■ You must know the ID of the Shortcut button.

Steps
1. At the appropriate location in a graphical script, navigate to a Command

Properties window.

2. In the Command Type area, select Java Command.

3. In the Command Info area, type in the Name field a unique name for this Java
command.

4. In the Command field, type the fully qualified Java command of the
appropriate Java method.

If you want to enable a Shortcut button, enter
oracle.apps.ies.bestpractice.ScriptUtil::enableShortcutButton.

If you want to disable a Shortcut button, enter
oracle.apps.ies.bestpractice.ScriptUtil::disableShortcutButton.

5. In the Parameters area of the Command Properties window, click Add.

The Parameters window appears.

6. In the Class field, leave this value blank.

7. In the Name field, type Proxy in exact case.

8. In the Value field, leave this value blank.

9. In the In/Out list, make no selection. This field is not configurable at this time.

10. In the Add Value as Command checkbox, leave this unselected.

11. Click OK.

The Parameters window closes and the new command parameter is listed as a
parameter to this command.

12. In the Parameters area of the Command Properties window, click Add.

The Parameters window appears.

13. In the Class field, leave this value blank.

14. In the Name field, type shortcutPanelID in exact case.

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-39

15. In the Value field, enter the ID of the Shortcut button.

16. In the In/Out list, make no selection. This field is not configurable at this time.

17. In the Add Value as Command checkbox, leave this unselected.

18. Click OK.

The Parameters window closes and the new command parameter is listed as a
parameter to this command.

19. Click Apply to save your work and continue, or click OK to save your work
and exit the Command Properties window.

See Also
Section 2.5.1 "Defining a Shortcut Button"

Section 2.5.3 "Enabling the Agent Interface Disconnect Button"

Section 2.5.5 "Defining the Script Information Area"

Section 2.5.6 "Defining a Constant Command"

Section 2.5.7 "Using the Indeterminate Branch"

Section 2.5.8 "Using Iterating Parameters"

Section 2.5.9 "Querying the Database and Displaying the Results"

Section 2.5.10 "Replacing a Panel with a Java Bean"

2.5.5 Defining the Script Information Area
If explicitly defined in a script, the script information area appears immediately
below the Oracle Applications toolbar in the Oracle Scripting agent user interface.

The script information area is also known as the Static Information Panel or the
Static Panel, although information displayed may contain dynamic information.
The script information area is a global script property of a graphical script, and
displays for all sessions of a script in which it has been defined. There are no
facilities for creating a script information area in a wizard script.

A script executed in the agent interface at runtime can display up to three rows of
information. Each row has a left, middle, and right position, for a total of nine
possible data element locations. Optionally, each data element may contain a label.
Data element types include text or timer.

Performing Advanced Graphical Script Tasks

2-40 Oracle Scripting Developer’s Guide

Text Data Elements
For text data elements, the value can be passed to the script information area at
runtime in two ways:

1. You can provide a constant value using a Constant command.

2. You can dynamically pass a value from the Blackboard. This allows you to
hard-code a value or insert a value retrieved using a PL/SQL query.

Timer Data Elements
Timers defined in the script information area will need to be activated elsewhere
using a Java command. If using the best practice Java methods, use the StartTimer
method in the ScriptUtil class. This command must not be a pre-condition to the
script. You can start the timer in one of two ways:

1. You can start the timer by referencing the appropriate Java method prior to the
first panel, in order to display the timer beginning with the first panel
displayed.

Any commands associated as an action with the outgoing branch of the Start
node will also be ignored. Any other location where a command can be defined
is appropriate. For example, you can reference the method as a precondition to
the first panel, or in a Block referencing an API as the action.

2. You can start the timer by referencing the appropriate Java method at a later
point in the script, in order to time a specific portion of the script.

More than one timer can be used in the Script Information panel. The best practices
methods include a StopTimer method which can be associated as a command to a
button on the Shortcut button bar or as an action anywhere in the script.

Use this procedure to define the script information area with text, timers, and labels.

Prerequisites
None

Steps
1. Using the Script Author, open a new or existing graphical script.

2. Double-click on an empty area of the canvas, or select Script Properties from
the File menu, to access properties of the global script object.

3. In the script properties menu, select the Static Panel attribute.

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-41

Static Panel properties appear as a matrix (up to three rows, each with a left,
center, and right position). Each cell represents the position where a defined set
of data elements appears at runtime.

4. Click in any cell to define a data element in that position at runtime.

The Text and Timer buttons enable.

5. Click Text or Timer, as appropriate.

6. The matrix refreshes, indicating the selected region and data type. The data
fields below the matrix enable.

7. Enter parameters for this data element as appropriate.

a. In the ID field, enter a unique identification value.

The Oracle Scripting API requires this ID.

b. In the Label field, enter the name you wish to appear as the label for this
data element, if any.

c. If you want to pass a command to this data element, in the Command field,
click Edit.

The Command Properties window appears.

d. Define the command as appropriate. When complete, click OK to save the
command and return to the Static Panel properties.

e. Click OK to save changes to the Command Properties window.

The matrix in the Static Panel properties displays the data element.

8. To save your work and define additional script information area attributes, click
Apply in the script properties window

Note: To reduce the amount of screen space consumed by the
script information area on an agent’s desktop, define your data
elements in rows. Unused rows will not display in runtime,
providing more viewing area for interaction center agents.

Note: Do not associate a Java command with a timer data
element. The Java command required to start the timer must not be
defined as a global script property.

Performing Advanced Graphical Script Tasks

2-42 Oracle Scripting Developer’s Guide

9. To save your work and exit the script properties window, click OK.

See Also
■ For information on passing a constant value to the script information area in the

agent interface at runtime, see Setting a Constant in Oracle Scripting User Guide,
Release 11i.

■ For information on using a Java command to start the timer, see Invoking a
Public Method in a Java Class in Oracle Scripting User Guide, Release 11i.

■ To use best practice Java to start the timer, use the command
oracle.apps.ies.bestpractice.ScriptUtil::StartTimer.

See Also
Section 2.5.1 "Defining a Shortcut Button"

Section 2.5.3 "Enabling the Agent Interface Disconnect Button"

Section 2.5.4 "Enabling or Disabling a Shortcut Button"

Section 2.5.6 "Defining a Constant Command"

Section 2.5.7 "Using the Indeterminate Branch"

Section 2.5.8 "Using Iterating Parameters"

Section 2.5.9 "Querying the Database and Displaying the Results"

Section 2.5.10 "Replacing a Panel with a Java Bean"

2.5.6 Defining a Constant Command
Follow this procedure to define a constant command in a graphical script.

Prerequisites
None

Steps
1. Using the Script Author, open a new or existing graphical script.

Note: Providing an entry in the Default Value field of the Define
Question Detail window of a wizard script will automatically
provide a constant command for a panel question at runtime.

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-43

2. At the location where you wish to provide a constant value as a command,
access the Command Properties window. (For more information, see
Section 2.2 "Determining Where to Define a Command".)

The Command Properties window appears.

3. From the Command Type list, select Constant Command.

4. In the Command Info area, type the name of the command in the Name field.

5. In the Return Value area, click Edit.

The Parameters window appears.

6. In the Class field, leave this value blank.

7. In the Name field, leave this value blank.

8. In the Value field, enter the value you wish to pass as a constant.

For example, type Customer Service Follow-Up.

9. In the In/Out list, make no selection. This field is not configurable at this time.

10. In the Add Value as Command checkbox, leave this unselected.

11. Click OK.

The Parameters window closes and the new command parameter is listed as a
return value to this command.

12. Click OK to save changes to the Command Properties window.

The value entered as a return value to this command will be passed at runtime.
For example, if you passed the value "Customer Service Follow-Up" as a label in
the script information area, this value appears in the script information area of
the agent user interface at runtime.

See Also
Section 2.5.1 "Defining a Shortcut Button"

Section 2.5.3 "Enabling the Agent Interface Disconnect Button"

Section 2.5.4 "Enabling or Disabling a Shortcut Button"

Section 2.5.5 "Defining the Script Information Area"

Section 2.5.7 "Using the Indeterminate Branch"

Section 2.5.8 "Using Iterating Parameters"

Performing Advanced Graphical Script Tasks

2-44 Oracle Scripting Developer’s Guide

Section 2.5.9 "Querying the Database and Displaying the Results"

Section 2.5.10 "Replacing a Panel with a Java Bean"

2.5.7 Using the Indeterminate Branch
Using the indeterminate branch and an associated Java method, you can route the
flow of a graphical script at runtime based on conditions tested for in your custom
code. You can "jump" to a sibling object on the graph, or to a group on any graph in
the script based on its shortcut property.

Like all commands, the expression associated with the indeterminate branch is
evaluated at runtime when the corresponding Script Author object is reached in the
flow of the script. When a condition tests true, the target destination provided by
the return statement becomes the next object processed in that script interaction.

Jumping to a Sibling Object
A sibling object is any Script Author object appearing on the same graph. If you
have only one graph in a script (the root graph), every object is a sibling object. With
the indeterminate branch, you can use any configurable object (a panel, group, or
block) as the destination, using the name of the object. Only panels contain elements
that are displayed at runtime, but if a group or block is the destination, the
processing associated with that group or block then occurs. If a panel is the
destination object, that panel’s display objects (any panel layout content, and at
least one answer control) appear to the script end user.

Jumping to a Group
To jump to a group on a different graph using the indeterminate branch, you must
(a) designate a shortcut within the target group, and (b) return the shortcut name in
the associated expression.

Oracle Corporation recommends using this feature sparingly, because it breaks
rules that all other branches (default, distinct, and conditional) follow, and
introduces great complexity in debugging script flow issues. Using the
indeterminate branch to jump to a group in a different graph of the script is similar
in approach and result to using a GoTo statement in other programming languages.
Oracle Scripting script development follows a strong paradigm of flow based on
expected conditions, and any other instance of script flow is easily traceable,
whereas using this approach is not.

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-45

Indeterminate Branch Exceptions
Graphs that contain an Indeterminate branch introduce two exceptions to general
Script Author syntax rules:

1. A graph with an Indeterminate branch need not adhere to the requirement for a
Termination node in order to pass a syntax check. This assumes the
Indeterminate branch is the last object that will be evaluated on that graph.

2. When using an Indeterminate branch, you may use panels or groups that have
no incoming branches, assuming these objects are to be reached no other way
than as the destination of a jump.

3. If an object breaks incoming branch requirements because it is the destination of
an indeterminate branch jump, standard syntax and branching rules for all
subsequent objects still apply (beginning with the outgoing branch from the
destination object).

For more information, see Understanding the Script Author > What Are the
Minimum Requirements for Any Graph? section of Oracle Scripting User's Guide,
Release 11i.

Sample Expressions Using Return Statement
The following are sample expressions using a return statement. The
jumpToDestination Java method evaluates the contents of a string populated in the
argument "answer" and routes the script accordingly.

public String jumpToDestination(ServerProxyBean pb, String answer)
 {
 if (answer.equals("condition_A"))
 {
 return "destination_A";
 }
 if (answer.equals("condition_b"))
 {
 return "destination_B";";
 }

 else
 {
 return "destination_C";
 }
 }

Performing Advanced Graphical Script Tasks

2-46 Oracle Scripting Developer’s Guide

■ If the first condition is found (if the value of the string answer is equal to
"condition_A"), the flow of the script will continue with the processing of the
object "destination_A."

■ If the second condition is found (if the value of the string answer is equal to
"condition_A"), the flow of the script will continue with the processing of the
object "destination_B."

■ If the third condition is found (if the value of the string answer is equal to any
value other than those tested in the previous conditions), the flow of the script
will continue with the processing of the object "destination_C."

■ If a listed destination is a sibling object (is on the same graph as the
Indeterminate branch), it can be a panel, group, or block.

■ If a listed destination is on any other graph in the script, it must be the Shortcut
name of a group in order to evaluate correctly at runtime.

■ The above method is just a sample. While this sample tests the contents of a
variable, any condition can be tested for and evaluated.

Prerequisites
■ Any panel, group or block object must exist on the canvas in order to use the

indeterminate branch.

■ Write the code for the expression (typically a Java method), following the
guidance above. The expression must name the destination object or objects,
based on each condition tested.

Steps
1. Using the Script Author, open an existing graphical script.

2. Navigate to an object for which you want to define an Indeterminate branch.

This object must currently have no outgoing branches.

3. In the tool palette, click the Indeterminate Branch Mode tool.

4. On the canvas, click on the source object and drag outwards about two inches in
any direction.

The Indeterminate branch appears.

5. Double-click on the branch object or right-click the branch and select Edit
Branch Properties.

The properties window for the Indeterminate branch appears.

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-47

6. Optionally, in the Indeterminate tree, select Properties.

In the Properties pane, two fields appear.

a. In the Name field, enter a meaningful name for this branch.

b. In the comments field, enter any descriptive comments if desired.

c. Click Apply to save your changes.

7. In the Indeterminate tree, select Expression.

8. In the Expression pane, click Edit.

The Command window appears.

9. Define the indeterminate expression as a command.

The command must return the name of:

a. a "sibling" object (a panel, block or group on the same graph as the source
object)

b. the Shortcut name associated with a group on any hierarchical level of the
script

10. Click OK to exit the Command window.

11. Click Apply to apply your work or click OK to save your work and exit the
Properties window.

See Also
Section 2.5.1 "Defining a Shortcut Button"

Section 2.5.3 "Enabling the Agent Interface Disconnect Button"

Section 2.5.4 "Enabling or Disabling a Shortcut Button"

Section 2.5.5 "Defining the Script Information Area"

Section 2.5.6 "Defining a Constant Command"

Section 2.5.8 "Using Iterating Parameters"

Section 2.5.9 "Querying the Database and Displaying the Results"

Section 2.5.10 "Replacing a Panel with a Java Bean"

Performing Advanced Graphical Script Tasks

2-48 Oracle Scripting Developer’s Guide

2.5.8 Using Iterating Parameters
With Oracle Scripting release 11.5.7, the iterating parameter property has been
added to the Command Parameter window for graphical scripts. This is
implemented as a checkbox in the Parameter window labeled "Iterating Parameter?"
Selecting this parameter allows the Scripting Engine to retrieve answers from a
vector. This is required when retrieving answers from one of the new
multiple-selection answer UI types (checkbox group or multi-select list box) and
passing the answers to a predefined API.

This section includes the following topics:

Section 2.5.8.1 "Business Rules Governing Iterating Parameters"

Section 2.5.8.2 "Iterating Parameters in the Scripting Engine"

See Also
Section 2.5.1 "Defining a Shortcut Button"

Section 2.5.3 "Enabling the Agent Interface Disconnect Button"

Section 2.5.4 "Enabling or Disabling a Shortcut Button"

Section 2.5.5 "Defining the Script Information Area"

Section 2.5.6 "Defining a Constant Command"

Section 2.5.7 "Using the Indeterminate Branch"

Section 2.5.9 "Querying the Database and Displaying the Results"

Section 2.5.10 "Replacing a Panel with a Java Bean"

2.5.8.1 Business Rules Governing Iterating Parameters
The business rules governing iterating parameters include:

1. Each command can contain at most only a single iterating parameter.

2. The iterating parameter can only be used with Script Author commands that
take arguments (Java, SQL, and Forms commands).

3. The single iterating parameter can be a parameter to the top-level command or
to a nested command (a command passed as the parameter to another
command).

4. A Parameter can only be marked as an iterating parameter if both of the
following conditions are true:

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-49

■ The parameter is a nested command (i.e., "Add Value as Command?" is
selected), and

■ The nested command can return a vector.

The following command types are supported: Blackboard, Java, SQL (with
iterating parameter), and Forms commands (with iterating parameter).

These rules are enforced in the Script Author, either via the Command and
Parameter windows or by the Syntax Checker.

2.5.8.2 Iterating Parameters in the Scripting Engine
The following describes the behavior of the iterating parameter in the Runtime
Scripting Engine:

During script runtime, the Scripting Engine (regardless of execution interface)
attempts to evaluate each parameter of a Script Author command. If the parameter
is marked as an iterating parameter, the Engine verifies that the value of the
parameter is a vector. Upon confirmation, the Engine iterates through the vector,
executing the command once for each element in the Vector. Each element in the
vector is passed to the command at the same place in the list of parameters as the
iterating parameter.

If the iterating parameter's nested command does not return a vector at runtime, an
exception is generated.

If the iterating parameter's nested command returns an empty vector at runtime,
the command is not executed at all, and no error or exception is generated.

Just as the answer to a multi-select node is stored in the blackboard as a vector of
individual selected items, setting the default value of a multi-select node must be
done with a vector. Each element of the vector is matched with the value of the
lookup choices of the node. If a match is found, that lookup choice is selected.

2.5.9 Querying the Database and Displaying the Results
Using a block designated as a query, you can obtain data stored in any database
tables accessible at runtime and display the information in a script.

After any successful query, values returned (if any) are stored temporarily in the
scripting cursor. This data does not persist beyond the next query, or the end of the
interaction, whichever comes first. Prior to the next query, you can retrieve data
from the cursor to display in a script, or write that data to the Scripting blackboard.

There are various ways to access data retrieved by a database query. These include:

Performing Advanced Graphical Script Tasks

2-50 Oracle Scripting Developer’s Guide

■ Displaying Returned Values as Panel Text

■ Displaying Returned Values as Panel Answer Lookup Values

■ Writing Returned Values to the Scripting Blackboard

■ Displaying the single record referenced by the cursor as panel text.

■ Displaying all records retrieved by the query as lookup values to an answer.

■ Writing retrieved records to the Scripting blackboard.

Some of these ways are documented below. This section includes the following
topics:

■ Section 2.5.9.1 "Displaying Returned Values as Panel Text"

■ Section 2.5.9.2 "Displaying Returned Values as Panel Answer Lookup Values"

■ Section 2.5.9.3 "Understanding the Scripting Cursor"

■ Section 2.5.9.4 "Scripting Engine Cursor APIs"

See Also
Section 2.5.1 "Defining a Shortcut Button"

Section 2.5.3 "Enabling the Agent Interface Disconnect Button"

Section 2.5.4 "Enabling or Disabling a Shortcut Button"

Section 2.5.5 "Defining the Script Information Area"

Section 2.5.6 "Defining a Constant Command"

Section 2.5.7 "Using the Indeterminate Branch"

Section 2.5.8 "Using Iterating Parameters"

Section 2.5.10 "Replacing a Panel with a Java Bean"

2.5.9.1 Displaying Returned Values as Panel Text
Information stored in the cursor as the result of a query can be displayed in a panel
as an embedded value using a blackboard command. If a database query contains
one or more constraints designed to ensure a single row is returned, you need only
reference the column name in the Command field of a blackboard command in
order to display the value. If more than one row is returned by a query you may be
required to advance through the rows, testing the values until you ascertain the one
which you wish to display. This requires custom Java commands executing cursor

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-51

APIs. For more information, see . For more information on storing and referencing
information returned by a query, see Understanding the Scripting Cursor.

See Also
Section 2.5.9.2 "Displaying Returned Values as Panel Answer Lookup Values"

Section 2.5.9.3 "Understanding the Scripting Cursor"

Section 2.5.9.4 "Scripting Engine Cursor APIs"

2.5.9.2 Displaying Returned Values as Panel Answer Lookup Values
Information stored in the cursor as the result of a query can be used to populate
panel answers.

Determine in Advance the Amount of Values to Display
To populate a single-value UI type, you must ensure that your query is structured to
return only a single row, because regardless of how many records are returned as a
result of a query, the cursor will only point to the first row. This applies to the
password field or standard boolean checkbox UI types, as well as open-ended UI
types such as the text field or text area.

To populate multiple-value UI types such as radio buttons, drop-down list boxes,
multi-select list boxes, or checkbox groups, your query should be structured to
return one or more values. Typically, users expect at least two values to be provided
for these choices. If a query at runtime is expected to populate an answer control,
and the query returns no values, the script user will not be able to pass that panel
and may not be able to complete the script.

Using Validation
To avoid creating a panel for which no answers can populate, and to preclude other
problems, creating validation for each query is strongly recommended.

You can write any validation routine you desire, and use commands in the Script
Author to execute validation. For example, you can use the Oracle Scripting API
isCursorValid in a Java command to check if records were returned to the Scripting

Caution: Do not use this procedure to populate the button answer
UI type. This functionality is not guaranteed to work. Any issues
encountered in this regard will not be supported by Oracle
Corporation.

Performing Advanced Graphical Script Tasks

2-52 Oracle Scripting Developer’s Guide

cursor. This API will pass a boolean value of "true" if the cursor contains records. If
used in a conditional branch, the branch should flow to continued execution of the
script upon returning "true." Whenever a conditional branch is used, a default
branch should also be used from the source object to branch the script should the
condition evaluated return a value of "false."

Working with a Stateful Transaction
When a query for a column name returns a value, that value is stored in the cursor
as a key/value pair, with the key equivalent to the column name. Prior to the next
query (if any), that value can be displayed or evaluated in the script using a
blackboard command. The key to access that value is equivalent to the column
name. If the same key is subsequently used as an answer name elsewhere in the
same script, then you must exercise caution when testing the blackboard value to
know where in the flow of the script you request the value. Since the blackboard
maintains state, testing the blackboard value after the query will provide one
answer, and testing the blackboard after the panel has been reached and answered
will return a second answer.

In some scripts, due to limited queries or rigid flow of the script, it is easy to make
this distinction. Other scripts involve substantial "jumping" or cycling through
various portions of the script. For example, a service script may ask after each
customer concern is addressed if there is anything else the agent can assist the
customer with. This would result in the same set of panels (typically collected in a
group object) being accessed multiple times in a script. In such cases, one possible
approach is to explicitly set a second blackboard answer that can be used as a
control.

Use the example of the value CUSTOMER_NAME, which in a given script can
potentially be populated both from a query and also from a panel answer. You can
create a Java command as a post-action to the relevant panel only, that sets
blackboard values (for example, the key/value pair of "setCUSTOMER_
NAMEFromPanel", "Y").

Any time you do a query in the script, you want to check both blackboard values
(CUSTOMER_NAME and setCUSTOMER_NAMEFromPanel. If the second
blackboard value is null, you know the value of CUSTOMER_NAME came from the
initial query. If the second blackboard value is Y, you know the value was populated
from the panel.

Prerequisites
■ You must know the appropriate tables and columns to query and have

appropriate database connection information and privileges.

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-53

■ Queries can return zero, one, or more than one rows of information. If using a
single-display UI type, you must use a query that will return a single value.

■ If using a multiple-display UI type, you must use a query that will return at
least a single value. It is recommended to use a query that will return at least
two values.

Steps
1. In the Script Author tool palette, click the Block Insertion Mode tool.

When the pointer is over the canvas, the pointer is a pointing finger

2. On the canvas, click where you want to insert the block.

The block appears. If the Popup on Blob Creation option is selected, then the
Properties window for the object appears.

3. If the Sticky Mode option is selected, then in the tool palette, click the Toggle
Select Mode tool.

4. On the canvas, double-click the block.

The Properties window appears.

5. In the Block tree, select Properties.

6. In the Name field, type the name of the block.

This name should indicate the purpose for the query. For example, type
getActiveScripts.

7. In the Comments field, type a comment if desired.

Comments are optional.

8. Click Apply to save your work and continue.

9. In the Block tree, select Types.

This is where you designate whether you want to insert, query, or update the
database, or whether you wish to access an API or other command.

10. From the Types list, select Query.

11. Click Apply to save your work and continue.

12. In the Block tree, select Object Dictionary.

13. Enter appropriate information in the Connection/Tables tab:

Performing Advanced Graphical Script Tasks

2-54 Oracle Scripting Developer’s Guide

a. In the Connection area, define how Oracle Scripting connects to the
database at runtime. To reuse an existing connection:

■ Select Reuse an existing connection.

■ From the Existing Connections list, select a connection.

To establish new connection information:

■ If necessary, clear Reuse an existing connection.

■ Type the connection parameters.

b. In the Tables area, for each table you wish to connect to:

■ Click Add Table.

■ The Table window appears. The text area will accommodate any length
required. Alternatively, you can resize this window if desired.

■ In the Table Name field, type the name of the table.

For example, type IES_DEPLOYED_SCRIPTS.

Although this field is not case sensitive, it is standard to type table names in
all upper-case letters.

■ Click OK.

c. Click Apply to save your work and continue.

14. If you want to access tables that require joins, then, in the Join Condition tab, do
the following:

a. Click Add.

The Join Condition window appears.

b. Identify primary key and foreign key information in the Master PK Table,
Detail PK Table, and Detail FK Table tab.

c. Click OK.

15. In the Query Data tab, do the following:

a. Click the Query Columns tab.

b. For each table in your query, identify the column as indicated:

■ Click Add Column.

■ In the Enter a Key/Value window, type the name of the column.

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-55

For example, type DSCRIPT_NAME to query the name of a script in table
IES_DEPLOYED_SCRIPTS, and ACTIVE_STATUS to query the active status
of the resulting script.

■ From the Data Type list, select the data type of the selected column.

For example, for DSCRIPT_NAME (which has a VARCHAR2 data type),
select VARCHAR, and for ACTIVE_STATUS (which has a number data
type) select BIGINT.

■ Click OK.

■ Repeat as necessary for other columns.

c. If your query has any constraints, then, in the Query Constraints tab, click
Add Constraint.

d. Enter your constraint just as you would using a SQL statement.

■ Include all information that would follow the WHERE clause.

■ Include literal strings within single quotes.

For example, type ANONYMOUS='YES' to include the constraint of
"where the anonymous flag is set to yes." (Note the single quotes for the
literal string ’Yes’.)

As another example, type ID=1 to include the constraint of "where the
specified identification number is equal to one." (Note the lack of single
quotes.)

■ Click OK.

■ Repeat as necessary for other constraints.

■ Each constraint added in the constraint window is automatically
concantenated together during runtime with AND and prepended with
WHERE. Optionally, the user can manually concatenate constraints into a
single constraint by including a literal string such as "OR", "AND", or
other accepted SQL conventions.

e. Users can reference blackboard values as query constraints using the syntax
":<BLACKBOARD KEY>". For example, type customer_id = :PARTY_ID
to include the constraint of "where the customer_id is equal to the PARTY_
ID value set in the blackboard for this session."

Note: Due to a limitation in the way blackboard key names are specified,
there must be at least one space following each blackboard key name to

Performing Advanced Graphical Script Tasks

2-56 Oracle Scripting Developer’s Guide

ensure your SQL will function. Thus, in the example above, type a space
after ":PARTY_ID" before exiting the constraints field.

■ Click OK to save properties for this block object.

The block properties window closes. The configured block appears on the
canvas.

16. Define objects (if required), termination point, and appropriate branching
within the block.

Panels within a block can be used to specify parameters to be used in the actual
SQL procedure. In this example, no parameters are required. However, since a
block introduces a child graph, you must provide appropriate branching and
termination for the script to be syntactically correct.

a. If necessary, in the tool palette, click the Toggle Select Mode tool.

b. On the canvas, click the block you have defined, and then click the Go
down into child graph button on the canvas tool bar.

The graph for the block appears.

c. In the tool palette, click the Termination Point tool.

d. On the canvas, click where you want to insert the Termination node.

e. In the tool palette, click the Default Branch Mode tool.

When the pointer is over the canvas, the pointer is a cross hair (+).

f. On the canvas, drag the pointer from the Start node to the Termination
node.

When you release the pointer, the objects are connected.

g. In the canvas tool bar, click Go up to parent graph.

17. In the tool palette, click the Panel Insertion Mode Point tool.

18. On the canvas, click where you want to insert the panel.

This panel will use the results of a successful query (defined above) to populate
an answer type.

19. On the canvas, double-click the panel.

The Properties window appears.

20. In the Panel tree, select Properties.

21. In the Name field, type the name of the panel.

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-57

22. Optionally, in the Comments field, enter any comments.

23. In the Label field, type the label of the panel.

The panel label is the value used to identify specific panels in the Progress Area
of the Scripting Engine agent interface at runtime. This does not display in the
Web interface.

24. Click Apply to save your work.

25. In the Panel tree, select Answers.

26. In the Answers pane, click Add.

The Answer Entry window appears. Do the following:

a. In the Answers pane, click Add.

b. Select the Default for Distinct Branching option.

c. In the Name field, provide an answer name.

For example, type showDSCRIPT_NAME.

d. From the UI type list, select an appropriate answer UI type:

■ For queries returning one value, use Text Field, Text Area, Check Box, or
Password, as appropriate.

■ For queries returning two or more values, use Radio Button, Drop Down,
Check Box group, or Multi-Select List Box, as appropriate.

For example, to display a list of active scripts, select Drop Down.

e. In the Label for reporting area, enter a label, if required.

f. Click Edit Data Dictionary.

g. In the data dictionary, click the Lookups tab.

h. From the Lookups area, select the Cursor Lookup option.

i. In the Cursor lookup display value field, enter any name.

j. In the Cursor lookup value field, enter the name of the database column
that you want to display in this answer UI type.

For example, type DSCRIPT_NAME.

k. Click OK to close the data dictionary for this specific answer.

l. Click OK to close the Answer Entry window.

Performing Advanced Graphical Script Tasks

2-58 Oracle Scripting Developer’s Guide

The Panel Properties window appears, listing the answer you have configured.

27. Define additional answers if desired.

28. Click OK to close the Panel Properties window.

29. Enter other objects into the script if desired.

30. In the tool palette, click the Termination Point tool.

31. On the canvas, click where you want to insert the Termination node.

32. In the tool palette, click the Default Branch Mode tool.

When the pointer is over the canvas, the pointer is a cross hair (+).

33. On the canvas, connect the block object to the panel object, and the panel object
to the Termination node. Connect other objects as appropriate.

34. Save your work.

See Also
Section 2.5.9.1 "Displaying Returned Values as Panel Text"

Section 2.5.9.3 "Understanding the Scripting Cursor"

Section 2.5.9.4 "Scripting Engine Cursor APIs"

2.5.9.3 Understanding the Scripting Cursor
The Scripting Cursor is a temporary memory space accessible only for the duration
of a single scripting interaction. After any successful query, values returned (if any)
are stored in the cursor.

Values retrieved are stored using the column names under which the data was
stored in the database table.

Data Persistence
Any values stored in the cursor will be overwritten with values retrieved by any
successive query in a single scripting interaction. Additionally, data does not persist
in the Scripting cursor beyond a single scripting interaction. Thus, after performing
a query, you must either use the required data prior to the next query, or write it to
the Scripting blackboard. Writing data to the blackboard will enable you to use the
data after any successive queries in that interaction. Note, however, that blackboard
data also does not persist beyond the current scripting interaction. You always have
the option of writing retrieved data to database tables for later access, if required.

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-59

Multiple Values, Single Reference
The full results of a query are stored in the cursor, whether one row is returned or
many. By default, the cursor points to the first row in a set of returned values. The
cursor can be advanced to the second or subsequent rows using specific cursor
APIs.

See Also
Section 2.5.9.1 "Displaying Returned Values as Panel Text"

Section 2.5.9.2 "Displaying Returned Values as Panel Answer Lookup Values"

Section 2.5.9.4 "Scripting Engine Cursor APIs"

2.5.9.4 Scripting Engine Cursor APIs
The Scripting Engine cursor is associated with the results of a SQL query executed
on a database. The cursor maintains a current record whose contents can be
retrieved and which can be advanced through each record in the result set returned
by the query, using cursor APIs.

Method Name Description Return Type Parameters

isCursorValid Returns the boolean value "true" if the cursor
contains results from a query; otherwise,
returns the boolean value "false." Throws
NotInInteractionException.

boolean Proxy

getNumberOfCursorColumns Returns the number of columns contained by
each record in the cursor. Throws
NotInInteractionException. If no results were
returned to the cursor, throws
InvalidCursorException.

integer Proxy

getCursorColumnNames Returns a vector of strings containing the
names of all columns in the cursor. Throws
NotInInteractionException. If no results were
returned to the cursor, throws
InvalidCursorException.

Vector Proxy

getCursorColumnTypes Returns a vector of Class objects containing the
types of all columns in the cursor. Throws
NotInInteractionException. If no results were
returned to the cursor, throws
InvalidCursorException.

Vector Proxy

Performing Advanced Graphical Script Tasks

2-60 Oracle Scripting Developer’s Guide

See Also
Section 2.5.9.1 "Displaying Returned Values as Panel Text"

Section 2.5.9.2 "Displaying Returned Values as Panel Answer Lookup Values"

Section 2.5.9.3 "Understanding the Scripting Cursor"

2.5.10 Replacing a Panel with a Java Bean
Use this procedure to replace a graphical script panel with a custom Java bean. The
use of Java beans to replace panels in a script is only supported for the Scripting
Engine agent interface.

Prerequisites
■ Create a java bean class that meets the requirements of an Oracle Scripting

replaceable java bean.

getNumberOfCursorRecords Returns the number of records contained in the
cursor. Throws NotInInteractionException. If
no results were returned to the cursor, throws
InvalidCursorException.

integer Proxy

isLastCursorRecord Returns the boolean value "true" if the current
record in the cursor is the last record of the
result set returned by the query. The value
"true" is returned if no records were returned as
a result of the query. Throws
NotInInteractionException. If no results were
returned to the cursor, throws
InvalidCursorException.

boolean Proxy

nextCursorRecord Advances the cursor so that the next record in
the result set becomes the current record.
Throws NotInInteractionException. Throws
Last Record Reached Exception if the current
record is also the last record. If no results were
returned to the cursor, throws
InvalidCursorException.

void Proxy

getCurrentRecord Returns a vector of objects containing the
contents of the current record in the cursor.
Throws NotInInteractionException. If no results
were returned to the cursor, throws
InvalidCursorException.

Vector Proxy

Method Name Description Return Type Parameters

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-61

■ Package the class containing the Java bean into a Java archive (JAR) file using
methods supported by Oracle Scripting (use the JAR utility from the JDK
specifying no compression, or create a ZIP file and rename the file to a JAR file
format).

■ Using the Scripting Administration console, upload the Java bean to the
applications database. For instructions, see Uploading New Java Archive Files
in the Oracle Scripting Implementation Guide.

■ Designate a panel in the custom script to be replaced with the Java bean.

To load a jar file into the database, you need to use the Scripting Administration
console. This requires Oracle Scripting release 11.5.9 or later or Interaction Center
Family Pack P or later. The Jar file tab allows you to specify a logical name for the
jar file (this needs to match the name given in step 2c). Then specify the file location
of the Jar file and upload the file. Note that a Jar/script mapping does not have to
be created if the Jar file is only to be used for its Java Beans (and not for other Java
Commands).

Steps
1. Using the Script Author, open a new or existing graphical script.

2. For a new script, create a panel by doing the following:

a. In the tool palette, click the Panel Insertion Mode tool.

b. On the canvas, click where you want to insert the panel.

c. In the tool palette, click the Toggle Select Mode tool.

d. Double-click on the appropriate panel.

The Panel Properties window appears.

e. From the panel properties tree, select Properties.

f. In the Properties pane, type a name for this panel.

g. Optionally, in the Properties pane, type comments and a label, if required.

3. For an existing script, locate the panel you want to replace, and access the panel
properties by doing the following:

a. In the tool palette, click the Toggle Select Mode tool.

b. Double-click on the appropriate panel.

The Panel Properties window appears.

Performing Advanced Graphical Script Tasks

2-62 Oracle Scripting Developer’s Guide

c. From the panel properties tree, select Properties.

4. In the Properties pane, select the Replace with a Java Bean box.

The Bean Name and Jar File Name fields enable.

5. In the Bean Name field, type the fully qualified class name of the Java Bean to
use, including package name.

6. In the Jar File Name field, type the name of the JAR file containing the
appropriate Java bean.

This is the logical name used to associate the Java archive file in the database. If
no value was provided in the Name field when uploading the Java bean, this
will be identical to the file name.

When uploading a Java archive into the applications database, this value is
referenced.

7. In the Panel Properties window, click OK.

The panel properties are saved, and the Panel Properties window closes.

8. Save your work.

Guidelines
Replacing panels in a script with custom Java beans is customization. Custom Java
beans must be developed by knowledgeable individuals certified in Java and any
other appropriate technologies. Problems with customized script are not supported.

Ensure you understand return values, methods, and properties used in custom Java
bean components.

See Also
Section 2.5.1 "Defining a Shortcut Button"

Section 2.5.3 "Enabling the Agent Interface Disconnect Button"

Section 2.5.4 "Enabling or Disabling a Shortcut Button"

Section 2.5.5 "Defining the Script Information Area"

Section 2.5.6 "Defining a Constant Command"

Section 2.5.7 "Using the Indeterminate Branch"

Section 2.5.8 "Using Iterating Parameters"

Section 2.5.9 "Querying the Database and Displaying the Results"

Performing Advanced Graphical Script Tasks

Customizing Oracle Scripting 2-63

Performing Advanced Graphical Script Tasks

2-64 Oracle Scripting Developer’s Guide

Seeded Script Author Commands 3-1

3
Seeded Script Author Commands

Reusable commands are stored Script Author commands that allow developers to
define parameters to be passed to PL/SQL procedures, Forms commands, Java
commands, Scripting blackboard commands, and constant commands.

Using Oracle Scripting release 11.5.7 and later, several reusable commands are
installed in the applications database and are available out of the box for use from
the Script Author. These seeded commands provide script developers with a set of
tools to integrate with Oracle business applications, and perform a number of
functions from a graphical script that integrate with the Trading Community
Architecture (TCA) of Oracle Applications, as well as specific schema items in
Oracle business applications such as Oracle TeleSales, Oracle TeleService, and
Oracle Collections. For example, using the commands currently available, you can
create a lead in Oracle TeleSales, register a customer for an event, or create contacts,
party IDs or locations in the TCA. Currently, all of the seeded commands available
are for business-to-business applications. These commands are all associated with a
contact within an organization in the TCA architecture. These commands create,
update, or retrieve information with a series of custom APIs that serve as wrappers
around the actual business objects exposed by the business applications. These
seeded commands are not applicable to business-to-consumer applications.

The table below lists the full set of seeded commands currently available:

 Command Function Command Name Description

Create Lead ies_create_opp_for_lead Creates an opportunity for an existing Oracle Telesales
sales lead.

Create Lead
Opportunity

ies_create_opp_for_lead Creates an opportunity for an existing Oracle Telesales
sales lead.

Send Collateral ies_send_collateral Creates a collateral request for One to One Fulfillment.

Register for an Event ies_create_event_reg Registers a customer for an event.

Support Statement

3-2 Oracle Scripting Developer’s Guide

3.1 Support Statement
Use of seeded commands in a script is considered customization, which is not
supported. In order to use the seeded commands successfully, you must have a
detailed understanding regarding the use of Oracle Scripting. Specifically, you must
understand how to create and modify commands for graphical scripts in the Script
Author, how to import, edit, and modify reusable commands, how to pass
parameters in a command, how to use blackboard, constant, and Java commands,
and more. You must understand and be certified in the relevant technologies (Java,
PL/SQL, SQL) and be familiar with Oracle Applications administration. If using
Java, you must be conversant with the appropriate methods of writing, testing,
compiling, and deploying the custom code, how to reference the code from the
Script Author, and where to administer Oracle Applications in the appropriate
architecture so that your compiled Java is accessible. This may involve some
Apache Web server administration or customization of other configuration files.

Seeded reusable commands are therefore documented to provide knowledgeable
and trained developers with the appropriate information to use the commands.

All reusable commands function as expected and as documented at the time of this
writing. Oracle Corporation warrants that these commands as documented function
at the time of publication. Since many of the commands integrate with other Oracle
Applications and with the applications database, no guarantee is provided by
Oracle Corporation that these commands will continue to work in future releases.

Register Interest for
Organization

ies_create_interest_org Registers a product interest at the Organization level.

Register Interest for
Contact

ies_create_interest_contact Registers a product interest at the Contact (Person) level.

Create Organization
Contact

ies_create_org_contact Creates a new customer in the CRM Trading Community
Architecture (TCA) schema.

Create Party Org Type ies_create_party_org_type Creates a Party organization in the TCA schema.

Create Party Site ies_create_party_site Creates a Party Site in the TCA schema.

Create Person Party ies_create_person_party Creates a Person Party in the TCA schema.

Create Location ies_create_location Creates a location/address in the TCA schema.

Update Organization
Contact

ies_update_org_contact Updates a contact in the TCA schema.

Update Party Site update_party_site Updates a location/address in the TCA schema.

 Command Function Command Name Description

Seeded Commands Overview

Seeded Script Author Commands 3-3

Nor is the use of seeded commands supported from a training perspective. If you
do not possess the appropriate skill sets as addressed above, Oracle Corporation
recommends you do not attempt to use the seeded commands. Since use of seeded
commands is customization, assistance is not available through Oracle Support
Services. These commands are provided as an added service to our customers on an
as-is basis. Use these components at your own risk.

3.2 Seeded Commands Overview
Each of the seeded commands listed above contains a number of parameters, as
described in this section. Using Script Author release 11.5.7 or later, you must
supply values for each of the parameters in order for the commands to be processed
correctly in a script. These scripts can be executed either in the agent interface, or as
a survey taken over the Web interface of Oracle Scripting.

For example, if you want to create a script that sends a collateral item to a customer,
you would need to supply information such as the recipient's e-mail address,
collateral ID, e-mail subject heading, and the content of the e-mail message that is
sent to the customer with the collateral attachment. The values from these
parameters can be derived from questions prompted for within the script (by
supplying a list of values of collateral items, which the user selects at runtime), or
they can be "hard coded" as constants in the Send Collateral reusable command.

The command parameters have been set up so they reference blackboard key names
for many of these commands. This provides you with flexibility in using the
commands by letting you either set the value of the blackboard key name to a
constant, or requiring you to use each blackboard key name as the name of a node
(also referred to as an "answer definition" or "question") which collects the
appropriate value from the user at runtime. Thus, to use one of the seeded
commands successfully, you must fully understand the set of parameters required
for the command to execute, and facilitate the passing of those parameters in the
script.

 For example, consider how the Send Collateral command might be used: Imagine a
scenario where you want to prompt the recipient for his or her e-mail address and
the specific piece of collateral desired. However, you want to "hard code" the values
to be used for the subject heading and e-mail message content. You can create a
script which uses the pre-defined blackboard key names as the questions which are
displayed at runtime. By collecting the runtime user's responses into these specific
blackboard key names, you can simply invoke the Send Collateral reusable
command without having to modify the command once it is pulled into the script.

Seeded Command Detail

3-4 Oracle Scripting Developer’s Guide

3.3 Seeded Command Detail
This section provides details for all seeded commands, including each seeded
command name, relevant package name, related building block script, and each
command parameter, blackboard value, and a brief description of each. The seeded
commands for which details follow include:

Section 3.3.1, "Create Lead"

Section 3.3.2, "Create Lead Opportunity"

Section 3.3.3, "Send Collateral"

Section 3.3.4, "Register for an Event"

Section 3.3.5, "Register Interest for Organization"

Section 3.3.6, "Register Interest for Contact"

Section 3.3.7, "Create Organization Contact"

Section 3.3.8, "Create Party Org Type"

Section 3.3.9, "Create Party Site"

Section 3.3.10, "Create Person Party"

Section 3.3.11, "Create Location"

Section 3.3.12, "Update Organization Contact"

Section 3.3.13, "Update Party Site"

3.3.1 Create Lead

Description
This command creates a lead in Oracle Telesales.

Prerequisites
 In order to successfully execute the Create Lead API, you must ensure that the user
has the appropriate responsibilities and profile settings that provide the ability to
create a lead through Oracle Telesales.

Package Name
IES_TELESALES_BP_PKG.create_sales_leads

Associated Building Block Script Name
ieslead.scr (Create Lead building block script)

Seeded Command Detail

Seeded Script Author Commands 3-5

Input Parameters
The parameters passed by this seeded command are as follows:

Parameter Blackboard Key Name Description

p_api_version Constant The version number for the API. This value is
pre-set and does not need to be changed.

p_budget_amount P_BUDGET_AMOUNT The amount of money that is being budgeted. This
parameter is not required and can be set to a null
value. If using the Create Lead building block script,
the P_BUDGET_AMOUNT value is set by an
answer in a panel within the Gather_Required_
Lead_Data group.

p_budget_status_code P_BUDGET_STATUS_CODE The status of the budget. This must be a valid
BUDGET_STATUS in the AMS_LOOKUPS table. If
using the Create Lead building block script, the P_
BUDGET_AMOUNT value is set by an answer in a
panel within the Gather_Required_Lead_Data
group.

p_channel_code Constant A channel code associated with the lead. This
parameter is assigned a value in the reusable
command and should not be changed.

p_contact_id CONTACT_ID The CONTACT_ID which identifies the person
within the organization for whom the lead is being
created. This must be a valid contact, and it is
associated with the Party_ID. If the script using the
reusable command has been called by
OracleTelesales or Collections, this value is passed
into the script with a Blackboard Name of
CONTACT_ID. If the script has been called by
Oracle Teleservice, the value of the CONTACT_ID
can be retrieved by using the Forms command
GetContactId and assigning its value as a constant
for this parameter. If you are using the Create Lead
building block script, the script checks to see if a
CONTACT_ID has been passed by the calling
application. If the value is null, it looks up the
CONTACT_ID based on the PARTY_ID passed into
the script. Otherwise, it provides a query allowing
you to select the Contact person.

 Though it references the blackboard key
CONTACT_ID, it is passing Null since CONTACT_
ID is never set.

p_currency_code Constant - USD A currency code. This value is pre-set and does not
need to be changed.

Seeded Command Detail

3-6 Oracle Scripting Developer’s Guide

p_customer_id PARTY_ID The Party_ID which identifies the organization with
which this lead is associated. This value is required,
and it must reference a valid organization. When a
script is invoked by Oracle Telesales or Collections,
this value is supplied as the PARTY_ID Blackboard
Name. If the script has been called by Oracle
Teleservice, the value of the PARTY_ID can be
retrieved by using the Forms command
GetCustomerId and assigning its value as a constant
for this parameter.

p_decision_timeframe_
code

P_DECISION_TIMEFRAME_
CODE

The time frame in which the customer/prospect
expects to purchase the product for which the lead is
being created. This value must be a valid
DECISION_TIMEFRAME in the AS_LOOKUPS
table. If using the Create Lead building block script,
the P_DECISION_TIMEFRAME_CODE value is set
by a an answer in a panel within the Gather_
Required_Lead_Data group.

p_description P_DESCRIPTION A description of the project for which the lead is
being created. The value for this is not validated and
may be null. If using the Create Lead building block
script, the P_DESCRIPTION value is set by an
answer in a panel within the Gather_Required_
Lead_Data group.

p_interest_type_id P_INTEREST_TYPE_ID Identifies the Interest Type for which the lead is
being created. This is a required value, and it must
be a valid INTEREST_TYPE_ID from the AS_
INTEREST_TYPES_V table. If using the Create Lead
building block script, the P_INTEREST_TYPE_ID is
set by a query that allows the user to select an
interest type from a drop down menu in a panel in
the Gather_Required_Lead_Data group.

p_primary_interest_
code_id

P_PRIMARY_INTEREST_
CODE_ID

Identifies the specific item, or interest code, for
which the lead is being created. This is a required
value, and it must be a valid INTEREST_CODE_ID
from the AS_INTEREST_CODES_V table. If using
the Create Lead building block script, the

 P_PRIMARY_INTEREST_CODE_ID is set by a
query that allows the user to select an interest code
from a drop down menu in a panel in the Gather_
Required_Lead_Data group.

Parameter Blackboard Key Name Description

Seeded Command Detail

Seeded Script Author Commands 3-7

Output Parameters
The parameters retrieved are as follows:

p_project_name P_PROJECT_NAME Identifies the project name the customer uses to
describe the initiative. This value is not validated
and can be null. If using the Create Lead building
block script, the P_PROJECT_NAME is set by an
answer in a panel in the Gather_Required_Lead_
Data group.

p_secondary_interest_
code_id

P_SECONDARY_INTEREST_
CODE_ID

Not required and may be null. Identifies the Interest
Type for which the lead is being created - and this is
referenced a secondary product interest. If this
parameter is set to a non-null value, it must be a
valid INTEREST_TYPE_ID from the

 AS_INTEREST_TYPES_V table. If using the Create
Lead building block script, the P_SECONDARY_
INTEREST_CODE_ID is set by a query that allows
the user to select an interest type from a drop down
menu in a panel in the Gather_Required_Lead_Data
group.

p_source_promotion_id P_SOURCE_PROMOTION_
ID

The source code for this lead. This value must be a
valid SOURCE_CODE_ID in the AMS_SOURCE_
CODES table. If using the Create Lead building
block script, the P_SOURCE_PROMOTION_ID
value is set by a an answer in a panel within the
Gather_Required_Lead_Data group.

p_status_code Constant Constant; leave the value already defined by the
script.

p_user_name IES_FND_USER_NAME Agent login name for the individual running the
script or survey. This is a required field, but it does
not need to be changed, as the IES_FND_USER_
NAME is automatically set. If the script is executed
via a survey, this is the Guest User login (JTF Guest
User, as described in the Oracle Scripting
Implementation Guide, release 11i).

Parameter Blackboard Key Name Description

x_msg_count x_msg_count Tells the number of error messages in the message
stack.

x_msg_data x_msg_data A concatenated error message.

Parameter Blackboard Key Name Description

Seeded Command Detail

3-8 Oracle Scripting Developer’s Guide

See Also
For more information, refer to the instructions on setting up Oracle Telesales agents
in the Oracle Telesales Implementation Guide, Release 11i, in the section "Setting Up
Users, Security and Reporting Hierarchy." This section describes how the Telesales
Agent account must be set up for Sales Group, Resources, and other responsibilities,
which allows the Telesales Agent to create a lead through the eBusiness Center.

3.3.2 Create Lead Opportunity

Description
This command creates an opportunity for an Oracle Telesales lead.

Prerequisites
An Oracle Telesales lead must already exist in order to create an opportunity for a
lead.

Package Name
IES_TELESALES_BP_PKG.create_opp_for_lead

Associated Building Block Script Name
ieslead.scr (Create Lead building block script)

Input Parameters
The parameters passed by this seeded command are as follows:

x_return_status x_return_status S - Success

E - Error

U - Unexpected error

x_sales_lead_id x_sales_lead_id The sales lead ID returned for a successful execution
of the API.

Parameter Blackboard Key Name Description

p_api_version Constant The version number for the API. This value is
pre-set and does not need to be changed.

Parameter Blackboard Key Name Description

Seeded Command Detail

Seeded Script Author Commands 3-9

p_sales_lead_id N/A N/A

p_budget_status_code P_BUDGET_STATUS_CODE The status of the budget. This must be a valid
BUDGET_STATUS in the AMS_LOOKUPS table. If
using the Create Lead building block script, the P_
BUDGET_AMOUNT value is set by an answer in a
panel within the Gather_Required_Lead_Data
group.

p_channel_code Constant A channel code associated with the lead. This
parameter is assigned a value in the reusable
command and should not be changed.

p_contact_id CONTACT_ID The CONTACT_ID which identifies the person
within the organization for whom the lead is being
created. This must be a valid contact, and it is
associated with the Party_ID. If the script using the
reusable command has been called by
OracleTelesales or Collections, this value is passed
into the script with a Blackboard Name of
CONTACT_ID. If the script has been called by
Oracle Teleservice, the value of the CONTACT_ID
can be retrieved by using the Forms command
GetContactId and assigning its value as a constant
for this parameter. If you are using the Create Lead
building block script, the script checks to see if a
CONTACT_ID has been passed by the calling
application. If the value is null, it looks up the
CONTACT_ID based on the PARTY_ID passed into
the script. Otherwise, it provides a query allowing
you to select the Contact person.

 Though it references the blackboard key
CONTACT_ID, it is passing Null since CONTACT_
ID is never set.

p_currency_code Constant - USD A currency code. This value is pre-set and does not
need to be changed.

Parameter Blackboard Key Name Description

Seeded Command Detail

3-10 Oracle Scripting Developer’s Guide

p_customer_id PARTY_ID The Party_ID which identifies the organization with
which this lead is associated. This value is required,
and it must reference a valid organization. When a
script is invoked by Oracle Telesales or Collections,
this value is supplied as the PARTY_ID Blackboard
Name. If the script has been called by Oracle
Teleservice, the value of the PARTY_ID can be
retrieved by using the Forms command
GetCustomerId and assigning its value as a constant
for this parameter.

p_decision_timeframe_
code

P_DECISION_TIMEFRAME_
CODE

The time frame in which the customer/prospect
expects to purchase the product for which the lead is
being created. This value must be a valid
DECISION_TIMEFRAME in the AS_LOOKUPS
table. If using the Create Lead building block script,
the P_DECISION_TIMEFRAME_CODE value is set
by a an answer in a panel within the Gather_
Required_Lead_Data group.

p_description P_DESCRIPTION A description of the project for which the lead is
being created. The value for this is not validated and
may be null. If using the Create Lead building block
script, the P_DESCRIPTION value is set by an
answer in a panel within the Gather_Required_
Lead_Data group.

p_interest_type_id P_INTEREST_TYPE_ID Identifies the Interest Type for which the lead is
being created. This is a required value, and it must
be a valid INTEREST_TYPE_ID from the AS_
INTEREST_TYPES_V table. If using the Create Lead
building block script, the P_INTEREST_TYPE_ID is
set by a query that allows the user to select an
interest type from a drop down menu in a panel in
the Gather_Required_Lead_Data group.

p_primary_interest_
code_id

P_PRIMARY_INTEREST_
CODE_ID

Identifies the specific item, or interest code, for
which the lead is being created. This is a required
value, and it must be a valid INTEREST_CODE_ID
from the AS_INTEREST_CODES_V table. If using
the Create Lead building block script, the

 P_PRIMARY_INTEREST_CODE_ID is set by a
query that allows the user to select an interest code
from a drop down menu in a panel in the Gather_
Required_Lead_Data group.

Parameter Blackboard Key Name Description

Seeded Command Detail

Seeded Script Author Commands 3-11

Output Parameters
The parameters retrieved are as follows:

p_project_name P_PROJECT_NAME Identifies the project name the customer uses to
describe the initiative. This value is not validated
and can be null. If using the Create Lead building
block script, the P_PROJECT_NAME is set by an
answer in a panel in the Gather_Required_Lead_
Data group.

p_secondary_interest_
code_id

P_SECONDARY_INTEREST_
CODE_ID

Not required and may be null. Identifies the Interest
Type for which the lead is being created - and this is
referenced a secondary product interest. If this
parameter is set to a non-null value, it must be a
valid INTEREST_TYPE_ID from the

 AS_INTEREST_TYPES_V table. If using the Create
Lead building block script, the P_SECONDARY_
INTEREST_CODE_ID is set by a query that allows
the user to select an interest type from a drop down
menu in a panel in the Gather_Required_Lead_Data
group.

p_source_promotion_id P_SOURCE_PROMOTION_
ID

The source code for this lead. This value must be a
valid SOURCE_CODE_ID in the AMS_SOURCE_
CODES table. If using the Create Lead building
block script, the P_SOURCE_PROMOTION_ID
value is set by a an answer in a panel within the
Gather_Required_Lead_Data group.

p_status_code Constant Constant; leave the value already defined by the
script.

p_user_name IES_FND_USER_NAME Agent login name for the individual running the
script or survey. This is a required field, but it does
not need to be changed, as the IES_FND_USER_
NAME is automatically set. If the script is executed
via a survey, this is the Guest User login (JTF Guest
User, as described in the Oracle Scripting
Implementation Guide, release 11i).

Parameter Blackboard Key Name Description

x_msg_count x_msg_count Tells the number of error messages in the message
stack.

x_msg_data x_msg_data A concatenated error message.

Parameter Blackboard Key Name Description

Seeded Command Detail

3-12 Oracle Scripting Developer’s Guide

3.3.3 Send Collateral

Description
This command creates a Fulfillment Request for Oracle One-to-One Fulfillment,
identifying the collateral that should be sent, the e-mail address to which it must be
sent, and the subject of the message. Upon executing this API, One-to-One
Fulfillment returns a Fulfillment Request ID, which can be used to track the status
of the fulfillment request. One-to-One Fulfillment is actually responsible for
processing the collateral request.

Prerequisites
None

Package Name
IES_TELESALES_BP_PKG.SUBMIT_COLLATERAL_TO_FM

Associated Building Block Script Name
iescltrl.scr (Create Collateral building block)

Input Parameters
The parameters passed by this seeded command are as follows:

x_return_status x_return_status S - Success

E - Error

U - Unexpected error

x_sales_lead_id x_sales_lead_id The sales lead ID returned for a successful execution
of the API.

Parameter Blackboard Key Name Description

p_api_version Constant The version number for the API. This value is
pre-set and does not need to be changed.

Parameter Blackboard Key Name Description

Seeded Command Detail

Seeded Script Author Commands 3-13

p_deliverable_id P_DELIVERABLE_ID Provides a valid collateral identifier, which must be
a valid DELIVERABLE_ID from the AMS_
DELIVERABLES_VL table. If you are using the
Create Collateral building block script, the value for
this blackboard key name is obtained by allowing
the user to select from a drop down menu that
displays a list of AMS_DELIVERABLE_NAME
values. When the user selects the Deliverable based
on its name, the script provides the P_
DELIVERABLE_ID.

p_email P_EMAIL Provides the e-mail address for the recipient. There
must be a valid e-mail address in this field. If you
are using the Create Collateral building block script,
the P_EMAIL blackboard key name is assigned a
default value of the e-mail address stored in HZ_
CONTACT_POINT.EMAIL_ADDRESS. If no e-mail
address is stored in this table, then the building
block displays a blank value.

p_party_id CONTACT_ID The CONTACT_ID which identifies the person
within the organization for whom the lead is being
created. This must be a valid contact, and it is
associated with the Party_ID. If the script using the
reusable command has been called by
OracleTelesales or Collections, this value is passed
into the script with a Blackboard Name of
CONTACT_ID. If the script has been called by
Oracle Teleservice, the value of the CONTACT_ID
can be retrieved by using the Forms command
GetContactId and assigning its value as a constant
for this parameter. If you are using the Create Lead
building block script, the script checks to see if a
CONTACT_ID has been passed by the calling
application. If the value is null, it looks up the
CONTACT_ID based on the PARTY_ID passed into
the script. Otherwise, it provides a query allowing
you to select the Contact person.

p_subject P_SUBJECT Subject line of the e-mail message sent with the
collateral attachment. This is a required field. If the
Create Collateral building block script is used, this
value is prompted for within the script.

Parameter Blackboard Key Name Description

Seeded Command Detail

3-14 Oracle Scripting Developer’s Guide

Output Parameters
The parameters retrieved are as follows:

3.3.4 Register for an Event

Description
Registers a customer or prospect for an Oracle Marketing Event. When the API is
successfully executed, it returns the Event Confirmation number and an Event ID.

Prerequisites
None

p_user_name IES_FND_USER_NAME Agent login name for the individual running the
script or survey. This is a required field, but it does
not need to be changed, as the IES_FND_USER_
NAME is automatically set. If the script is executed
via a survey, this is the Guest User login (JTF Guest
User, as described in the Oracle Scripting
Implementation Guide, release 11i).

p_user_note P_USER_NOTE The text of a note that is appended within the e-mail
message sent with the collateral attachment. This is
not required and the value may be null. If the Create
Collateral building block script is used, this value is
prompted for within the script.

Parameter Blackboard Key Name Description

x_msg_count x_msg_count Tells the number of error messages in the message
stack.

x_msg_data x_msg_data A concatenated error message.

x_request_id x_request_id Fulfillment request ID that is returned from One to
One Fulfillment. You can use this request ID to
monitor the status of the request from the
Fulfillment Admin Console

x_return_status x_return_status S - Success

E - Error

U - Unexpected error

Parameter Blackboard Key Name Description

Seeded Command Detail

Seeded Script Author Commands 3-15

Package Name
IES_TELESALES_BP_PKG.register_for_event

Associated Building Block Script Name
iesevent.scr (Event Registration building block)

Input Parameters
The parameters passed by this seeded command are as follows:

Parameter Blackboard Key Name Description

p_api_version Constant The version number for the API. This value is
pre-set and does not need to be changed.

p_application_id Constant The version number for the API. This value is
pre-set and does not need to be changed.

p_attendant_contact_id PARTY_CONTACT_ID Required field. The ORG CONTACT ID off the
contact in the HZ_CONTACT_ORG_CONTACTS
table. When using the Event Registration building
block, this value is automatically retrieved.

p_attendant_party_id CONTACT_ID Required field. The CONTACT_ID which identifies
the person within the organization for whom the
lead is being created. This must be a valid contact,
and it is associated with the Party_ID. If the script
using the reusable command has been called by
OracleTelesales or Collections, this value is passed
into the script with a Blackboard Name of
CONTACT_ID. If the script has been called by
Oracle Teleservice, the value of the CONTACT_ID
can be retrieved by using the Forms command
GetContactId and assigning its value as a constant
for this parameter. If you are using the Create Lead
building block script, the script checks to see if a
CONTACT_ID has been passed by the calling
application. If the value is null, it looks up the
CONTACT_ID based on the PARTY_ID passed into
the script. Otherwise, it provides a query allowing
you to select the Contact person.

Seeded Command Detail

3-16 Oracle Scripting Developer’s Guide

Output Parameters
The parameters retrieved are as follows:

p_event_offer_id P_EVENT_OFFER_ID Required field. A valid EVENT_OFFER_ID from the
AMS_EVENT_OFFERS_VL table. If using the Event
Registration Building block, the value for P_
EVENT_OFFER_ID is retrieved from a query which
displays a drop down menu of all EVENT_OFFER_
NAMES. When the user select the event, the P_
EVENT_OFFER_ID is set.

p_registrant_contact_id PARTY_CONTACT_ID Required field. It is set in the manner described for
the PARTY_CONTACT_ID blackboard key name
above.

p_registrant_party_id CONTACT_ID Required field. It is set in the manner described for
the CONTACT_ID blackboard key name above.

p_source_code P_SOURCE_CODE Required field. A valid source code from the AMS_
SOURCE_CODES table. If using the Event
Registration building block, the value for P_
SOURCE_CODE is retrieved by a query of all
SOURCE_CODES in the AMS_SOURCE_CODES
table, and the user is able to select the value from the
table.

p_user_name IES_FND_USER_NAME Agent login name for the individual running the
script or survey. This is a required field, but it does
not need to be changed, as the IES_FND_USER_
NAME is automatically set. If the script is executed
via a survey, this is the Guest User login (JTF Guest
User, as described in the Oracle Scripting
Implementation Guide, release 11i).

Parameter Blackboard Key Name Description

x_confirmation_code x_confirmation_code A confirmation number when the API executes
successfully.

x_event_registration_id x_event_registration_id The event registration ID when the API executes
successfully.

x_msg_count x_msg_count Tells the number of error messages in the message
stack.

x_msg_data x_msg_data A concatenated error message.

Parameter Blackboard Key Name Description

Seeded Command Detail

Seeded Script Author Commands 3-17

3.3.5 Register Interest for Organization

Description
Creates an interest at an Organization (party) level. Can provide up to two interest
codes.

Prerequisites
None

Package Name
None

Associated Building Block Script Name
iesinto.scr (Register Interest for Organization building block)

Input Parameters
The parameters passed by this seeded command are as follows:

x_return_status x_return_status S - Success

E - Error

U - Unexpected error

x_system_status_code x_system_status_code A system status code.

Parameter Blackboard Key Name Description

p_api_version Constant The version number for the API. This value is
pre-set and does not need to be changed.

Parameter Blackboard Key Name Description

Seeded Command Detail

3-18 Oracle Scripting Developer’s Guide

p_contact_id CONTACT_ID Required field. The CONTACT_ID which identifies
the person within the organization for whom the
lead is being created. This must be a valid contact,
and it is associated with the Party_ID. If the script
using the reusable command has been called by
OracleTelesales or Collections, this value is passed
into the script with a Blackboard Name of
CONTACT_ID. If the script has been called by
Oracle Teleservice, the value of the CONTACT_ID
can be retrieved by using the Forms command
GetContactId and assigning its value as a constant
for this parameter. If you are using the Create Lead
building block script, the script checks to see if a
CONTACT_ID has been passed by the calling
application. If the value is null, it looks up the
CONTACT_ID based on the PARTY_ID passed into
the script. Otherwise, it provides a query allowing
you to select the Contact person.

p_interest_type_id P_INTEREST_TYPE_ID Required field. A valid INTEREST_TYPE_ID from
the AS_INTEREST_TYPES_V table. If using the
Register Interest for Organization building block
script, the value for P_INTEREST_TYPE_ID is
provided by a query of this table. The user selects a
INTEREST_TYPE, and the script provides the
associated INTEREST_TYPE_ID as P_INTEREST_
TYPE_ID.

p_party_id PARTY_ID Required field. This is the PARTY_ID corresponding
to the Organization from which the contact was
selected. This value is required, and it must
reference a valid organization. When a script is
invoked by Oracle Telesales or Collections, this
value is supplied as the PARTY_ID Blackboard
Name. If the script has been called by Oracle
Teleservice, the value of the PARTY_ID can be
retrieved by using the Forms command
GetCustomerId and assigning its value as a constant
for this parameter.

p_party_site_id P_PARTY_SITE_ID Required field. The party site associated with the
contact. The P_PARTY_SITE_ID is automatically
populated by the Register Interest for Organization
building block script.

p_party_type Constant The type of party for which the interest is being
created. This value is pre-filled and should not be
changed.

Parameter Blackboard Key Name Description

Seeded Command Detail

Seeded Script Author Commands 3-19

Output Parameters
The parameters retrieved are as follows:

p_primary_interest_
code_id

P_PRIMARY_INTEREST_
CODE_ID

Required field. A valid INTEREST_CODE_ID from
the AS_INTEREST_TYPES_V table. If using the
Register Interest for Organization building block
script, the value for P_INTEREST_TYPE_ID is
provided by a query of this table. The user selects an
INTEREST_CODE, and the script provides the
associated P_PRIMARY_INTEREST_CODE_ID as
P_PRIMARY_INTEREST_CODE_ID.

p_secondary_interest_
code_id

P_SECONDARY_INTEREST_
CODE_ID

Not required and may be null. If this parameter is
set to a non-null value, it must have valid
INTEREST_CODE_ID from the AS_INTEREST_
TYPES_V table. If using the Register Interest for
Organization building block script, the value for P_
INTEREST_TYPE_ID is provided by a query of this
table. The user selects an INTEREST_CODE, and the
script provides the associated P_SECONDARY_
INTEREST_CODE_ID as P_SECONDARY_
INTEREST_CODE_ID.

p_user_name IES_FND_USER_NAME Agent login name for the individual running the
script or survey. This is a required field, but it does
not need to be changed, as the IES_FND_USER_
NAME is automatically set. If the script is executed
via a survey, this is the Guest User login (JTF Guest
User, as described in the Oracle Scripting
Implementation Guide, release 11i).

Parameter Blackboard Key Name Description

x_interest_id x_interest_id A confirmation number when the API executes
successfully.

x_msg_count x_msg_count Tells the number of error messages in the message
stack.

x_msg_data x_msg_data A concatenated error message.

x_return_status x_return_status S - Success

E - Error

U - Unexpected error

x_system_status_code x_system_status_code A system status code.

Parameter Blackboard Key Name Description

Seeded Command Detail

3-20 Oracle Scripting Developer’s Guide

3.3.6 Register Interest for Contact

Description
Registers an interest for a contact.

Prerequisites
None

Package Name
ies_create_interest_contact

Associated Building Block Script Name
iesintc.scr (Register Interest for Contact building block)

Input Parameters
The parameters passed by this seeded command are as follows:

Parameter Blackboard Key Name Description

p_api_version Constant The version number for the API. This value is
pre-set and does not need to be changed.

p_interest_type_id P_INTEREST_TYPE_ID Required field. A valid INTEREST_TYPE_ID from
the AS_INTEREST_TYPES_V table. If using the
Register Interest for Organization building block
script, the value for P_INTEREST_TYPE_ID is
provided by a query of this table. The user selects a
INTEREST_TYPE, and the script provides the
associated INTEREST_TYPE_ID as P_INTEREST_
TYPE_ID.

p_org_contact_id PARTY_CONTACT_ID Required field. The ORG CONTACT ID off the
contact in the HZ_CONTACT_ORG_CONTACTS
table. When using the Event Registration building
block, this value is automatically retrieved.

Seeded Command Detail

Seeded Script Author Commands 3-21

p_party_id PARTY_ID Required field. This is the PARTY_ID corresponding
to the Organization from which the contact was
selected. This value is required, and it must
reference a valid organization. When a script is
invoked by Oracle Telesales or Collections, this
value is supplied as the PARTY_ID Blackboard
Name. If the script has been called by Oracle
Teleservice, the value of the PARTY_ID can be
retrieved by using the Forms command
GetCustomerId and assigning its value as a constant
for this parameter.

p_party_site_id P_PARTY_SITE_ID Required field. The party site associated with the
contact. The P_PARTY_SITE_ID is automatically
populated by the Register Interest for Organization
building block script.

p_party_type Constant The type of party for which the interest is being
created. This value is pre-filled and should not be
changed.

p_primary_interest_
code_id

P_PRIMARY_INTEREST_
CODE_ID

Required field. A valid INTEREST_CODE_ID from
the AS_INTEREST_TYPES_V table. If using the
Register Interest for Organization building block
script, the value for P_INTEREST_TYPE_ID is
provided by a query of this table. The user selects an
INTEREST_CODE, and the script provides the
associated P_PRIMARY_INTEREST_CODE_ID as
P_PRIMARY_INTEREST_CODE_ID.

p_secondary_interest_
code_id

P_SECONDARY_INTEREST_
CODE_ID

Not required and may be null. If this parameter is
set to a non-null value, it must have valid
INTEREST_CODE_ID from the AS_INTEREST_
TYPES_V table. If using the Register Interest for
Organization building block script, the value for P_
INTEREST_TYPE_ID is provided by a query of this
table. The user selects an INTEREST_CODE, and the
script provides the associated P_SECONDARY_
INTEREST_CODE_ID as P_SECONDARY_
INTEREST_CODE_ID.

p_user_name IES_FND_USER_NAME Agent login name for the individual running the
script or survey. This is a required field, but it does
not need to be changed, as the IES_FND_USER_
NAME is automatically set. If the script is executed
via a survey, this is the Guest User login (JTF Guest
User, as described in the Oracle Scripting
Implementation Guide, release 11i).

Parameter Blackboard Key Name Description

Seeded Command Detail

3-22 Oracle Scripting Developer’s Guide

Output Parameters
The parameters retrieved are as follows:

3.3.7 Create Organization Contact

Description
Creates a contact for an organization.

Prerequisites
None

Package Name
IES_TCA_BP_PKG.create_org_contact

Associated Building Block Script Name
iescustr.scr (Retrieve Existing Contact Within an Organization building block. This
script creates a contact (name and address information), a party, a party location,
and an organization type in the TCA schema.

Input Parameters
The parameters passed by this seeded command are as follows:

Parameter Blackboard Key Name Description

x_interest_id x_interest_id A confirmation number when the API executes
successfully.

x_msg_count x_msg_count Tells the number of error messages in the message
stack.

x_msg_data x_msg_data A concatenated error message.

x_return_status x_return_status S - Success

E - Error

U - Unexpected error

Parameter Blackboard Key Name Description

p_api_version Constant The version number for the API. This value is
pre-set and does not need to be changed.

Seeded Command Detail

Seeded Script Author Commands 3-23

p_interest_type_id P_INTEREST_TYPE_ID Required field. A valid INTEREST_TYPE_ID from
the AS_INTEREST_TYPES_V table. If using the
Register Interest for Organization building block
script, the value for P_INTEREST_TYPE_ID is
provided by a query of this table. The user selects a
INTEREST_TYPE, and the script provides the
associated INTEREST_TYPE_ID as P_INTEREST_
TYPE_ID.

p_content_source_type Constant Required field. If using the building block script
iescustr.scr, this is defined as a Constant that is set to
an original value of USER_ENTERED.

p_org_party_id x_party_id Required field. The Party_ID of the organization to
whom this contact is attached.If using the building
block script iescustr.scr, this is set to the blackboard
value for the blackboard key name of x_party_id.
The blackbody key of x_party_id is set as a Post
Action in the panel called Collect Org Details, as the
return parameter on the reusable command ies_
create_party_org_type.

p_party_relationship_
type

Constant Required field. If using the building block script
iescustr.scr, this is defined as a Constant with a
value of CONTACT_OF.

p_party_site_id x_party_site_id Required field. The party site associated with the
contact.If using the building block script iescustr.scr,
this is set to the value of the blackboard key of x_
party_site_id. The blackboard key for x_party_site_
id is set by the Post Action on the group called
Create Party Site, which invokes the reusable
command ies_create_party_site.

p_person_party_id x_person_party_id Required field. If using the building block scripts
iescustr.scr, this is set to the Blackboard value for the
blackboard key name x_person_party_id. The
blackboard key of _person_party_id is set by the
panel called Collect Person Info in the Post Action
which calls the reusable command ies_create_
person_party.

p_user_name IES_FND_USER_NAME Agent login name for the individual running the
script or survey. This is a required field, but it does
not need to be changed, as the IES_FND_USER_
NAME is automatically set. If the script is executed
via a survey, this is the Guest User login (JTF Guest
User, as described in the Oracle Scripting
Implementation Guide, release 11i).

Parameter Blackboard Key Name Description

Seeded Command Detail

3-24 Oracle Scripting Developer’s Guide

Output Parameters
The parameters retrieved are as follows:

3.3.8 Create Party Org Type

Description
Creates a party organization type.

Prerequisites
None

Package Name
IES_TCA_BP_PKG.create_organization

Associated Building Block Script Name
iescustr.scr (Retrieve Existing Contact Within an Organization building block. This
script creates a contact (name and address information), a party, a party location,
and an organization type in the TCA schema.

Parameter Blackboard Key Name Description

x_msg_count x_msg_count Tells the number of error messages in the message
stack.

x_msg_data x_msg_data A concatenated error message.

x_org_contact_id x_org_contact_id The Organization Contact ID of the organization
created by successful completion of this reusable
command.

x_party_rel_id x_party_rel_id The Party Relationship ID of the party created by
successful completion of this reusable command.

x_rel_party_id x_rel_party_id The Relationship Party ID created by successful
completion of this reusable command.

x_rel_party_number x_rel_party_number The Relationship Party Number created by
successful completion of this reusable command.

x_return_status x_return_status S - Success

E - Error

U - Unexpected error

Seeded Command Detail

Seeded Script Author Commands 3-25

Input Parameters
The parameters passed by this seeded command are as follows:

Output Parameters
The parameters retrieved are as follows:

Parameter Blackboard Key Name Description

p_api_version Constant The version number for the API. This value is
pre-set and does not need to be changed.

p_content_source_type Constant Required field. If using the building block script
iescustr.scr, this is defined as a Constant that is set to
an original value of USER_ENTERED.

p_org_name P_ORG_NAME Required field. The name of the Organization being
created.If using the building block script iescustr.scr,
this blackboard key value is defined as the answer to
a question in the panel called Collect Org Details.

p_party_relationship_
type

Constant Required field. If using the building block script
iescustr.scr, this is defined as a Constant with a
value of CONTACT_OF.

p_user_name IES_FND_USER_NAME Agent login name for the individual running the
script or survey. This is a required field, but it does
not need to be changed, as the IES_FND_USER_
NAME is automatically set. If the script is executed
via a survey, this is the Guest User login (JTF Guest
User, as described in the Oracle Scripting
Implementation Guide, release 11i).

Parameter Blackboard Key Name Description

x_msg_count x_msg_count Tells the number of error messages in the message
stack.

x_msg_data x_msg_data A concatenated error message.

x_party_id x_party_id The Party ID for the record created upon successful
completion of this reusable command.

x_party_number x_party_number The Party Number for the record created upon
successful completion of this reusable command.

x_profile_id x_profile_id The Profile ID for the record created upon successful
completion of this reusable command.

Seeded Command Detail

3-26 Oracle Scripting Developer’s Guide

3.3.9 Create Party Site

Description
Creates a party site.

Prerequisites
None

Package Name
 IES_TCA_BP_PKG.create_party_site

Associated Building Block Script Name
iescustr.scr (Retrieve Existing Contact Within an Organization building block. This
script creates a contact (name and address information), a party, a party location,
and an organization type in the TCA schema.

Input Parameters
The parameters passed by this seeded command are as follows:

x_return_status x_return_status S - Success

E - Error

U - Unexpected error

Parameter Blackboard Key Name Description

p_api_version Constant The version number for the API. This value is
pre-set and does not need to be changed.

p_location_id x_location_id Required field. If using the building block script
iescustr.scr, this is set to the Blackboard value for the
blackboard key name of x_location_id. The
blackboard key of x_location_id is set as a Post
Action in the Group called Create Location, upon
successful completion of the reusable command ies_
create_location.

Parameter Blackboard Key Name Description

Seeded Command Detail

Seeded Script Author Commands 3-27

Output Parameters
The parameters retrieved are as follows:

3.3.10 Create Person Party

Description
Creates a person/contact for an organization, setting the name and time, and
retrieving the ID for the contact.

p_party_id x_party_id Required field. The Party_ID of the organization to
whom this contact is attached. If using the building
block script iescustr.scr, this is set to the blackboard
value for the blackboard key name of x_party_id.
The blackboard key of x_party_id is set as a Post
Action in the panel called Collect Org Details, as the
return parameter on the reusable command ies_
create_party_org_type.

p_user_name IES_FND_USER_NAME Agent login name for the individual running the
script or survey. This is a required field, but it does
not need to be changed, as the IES_FND_USER_
NAME is automatically set. If the script is executed
via a survey, this is the Guest User login (JTF Guest
User, as described in the Oracle Scripting
Implementation Guide, release 11i).

Parameter Blackboard Key Name Description

x_msg_count x_msg_count Tells the number of error messages in the message
stack.

x_msg_data x_msg_data A concatenated error message.

x_party_site_id x_party_site_id The Party Site ID for the record created upon
successful completion of the reusable command

x_party_site_number x_party_site_number The Party Site Number for the record created upon
successful completion of this reusable command.

x_return_status x_return_status S - Success

E - Error

U - Unexpected error

Parameter Blackboard Key Name Description

Seeded Command Detail

3-28 Oracle Scripting Developer’s Guide

Prerequisites
None

Package Name
IES_TCA_BP_PKG.create_person

Associated Building Block Script Name
iescustr.scr (Retrieve Existing Contact Within an Organization building block. This
script creates a contact (name and address information), a party, a party location,
and an organization type in the TCA schema.

Input Parameters
The parameters passed by this seeded command are as follows:

Parameter Blackboard Key Name Description

p_api_version Constant The version number for the API. This value is
pre-set and does not need to be changed.

p_content_source_type Constant Required field.If using the building block script
iescustr.scr, this is defined as a Constant that is set to
an original value of USER_ENTERED.

p_first_name P_FIRST_NAME Required field. The first name of the individual. If
using the building block script iescustr.scr, this
blackboard key is defined as the answer to a
question in the panel called Collect Person Info.

p_last_name P_LAST_NAME Required field. The last name of the individual. If
using the building block script iescustr.scr, this
blackboard key is defined as the answer to a
question in the panel called Collect Person Info.

p_middle_name P_MIDDLE_NAME Required field. The middle name of the individual.
If using the building block script iescustr.scr, this
blackboard key is defined as the answer to a
question in the panel called Collect Person Info.

p_title P_TITLE Required field. The title (Mr., Mrs., Ms, etc.) of the
individual. If using the building block script
iescustr.scr, this blackboard key is defined as the
answer to a question in the panel called Collect
Person Info.

Seeded Command Detail

Seeded Script Author Commands 3-29

Output Parameters
The parameters retrieved are as follows:

3.3.11 Create Location

Description
Creates a location for a contact, setting the contact's address information, and
retrieving the ID for the location.

Prerequisites
None

Package Name
IES_TCA_BP_PKG.create_location

p_user_name IES_FND_USER_NAME Agent login name for the individual running the
script or survey. This is a required field, but it does
not need to be changed, as the IES_FND_USER_
NAME is automatically set. If the script is executed
via a survey, this is the Guest User login (JTF Guest
User, as described in the Oracle Scripting
Implementation Guide, release 11i).

Parameter Blackboard Key Name Description

x_msg_count x_msg_count Tells the number of error messages in the message
stack.

x_msg_data x_msg_data A concatenated error message.

x_party_number x_party_number The Party Number for the record created upon
successful completion of this reusable command.

x_party_site_number x_party_site_number The Party Site Number for the record created upon
successful completion of this reusable command.

x_profile_id x_profile_id The profile ID for the record created upon successful
completion of this reusable command.

x_return_status x_return_status S - Success

E - Error

U - Unexpected error

Parameter Blackboard Key Name Description

Seeded Command Detail

3-30 Oracle Scripting Developer’s Guide

Associated Building Block Script Name
iescustr.scr (Retrieve Existing Contact Within an Organization building block. This
script creates a contact (name and address information), a party, a party location,
and an organization type in the TCA schema.

Input Parameters
The parameters passed by this seeded command are as follows:

Parameter Blackboard Key Name Description

p_api_version Constant The version number for the API. This value is
pre-set and does not need to be changed.

p_address1 P_ADDRESS1 Required field. If using the building block script
iescustr.scr, this is defined as a blackboard key in the
panel called Collect Person Info.

p_address2 P_ADDRESS2 Required field. If using the building block script
iescustr.scr, this is defined as a blackboard key in the
panel called Collect Person Info.

p_address3 P_ADDRESS3 Required field. If using the building block script
iescustr.scr, this is defined as a blackboard key in the
panel called Collect Person Info.

p_address4 P_ADDRESS4 Required field. If using the building block script
iescustr.scr, this is defined as a blackboard key in the
panel called Collect Person Info.

p_city P_CITY Required field. If using the building block script
iescustr.scr, this is defined as a blackboard key in the
panel called Collect Person Info.

p_postal_code P_POSTAL_CODE Required field. If using the building block script
iescustr.scr, this is defined as a blackboard key in the
panel called Collect Person Info.

p_province P_PROVINCE Required field. If using the building block script
iescustr.scr, this is defined as a blackboard key in the
panel called Collect Person Info.

p_state P_STATE Required field. If using the building block script
iescustr.scr, this is defined as a blackboard key in the
panel called Collect Person Info.

p_country P_COUNTRY Required field. If using the building block script
iescustr.scr, this is defined as a blackboard key in the
panel called Collect Person Info.

Seeded Command Detail

Seeded Script Author Commands 3-31

Output Parameters
The parameters retrieved are as follows:

3.3.12 Update Organization Contact

Description
Updates the contact information for a contact in an organization.

Prerequisites
Contact information for an organization must already exist.

Package Name
IES_TCA_BP_PKG.update_org_contact

p_user_name IES_FND_USER_NAME Agent login name for the individual running the
script or survey. This is a required field, but it does
not need to be changed, as the IES_FND_USER_
NAME is automatically set. If the script is executed
via a survey, this is the Guest User login (JTF Guest
User, as described in the Oracle Scripting
Implementation Guide, release 11i).

Parameter Blackboard Key Name Description

x_msg_count x_msg_count Tells the number of error messages in the message
stack.

x_msg_data x_msg_data A concatenated error message.

x_location_id x_location_id The location ID for the record created upon
successful completion of this reusable command.

x_return_status x_return_status S - Success

E - Error

U - Unexpected error

Parameter Blackboard Key Name Description

Seeded Command Detail

3-32 Oracle Scripting Developer’s Guide

Associated Building Block Script Name
iesupdct.scr (Update Contact Information building block). This script retrieves an
existing contact within an organization, then allows the user to update the contact
name and address information.

Input Parameters
The parameters passed by this seeded command are as follows:

Output Parameters
The parameters retrieved are as follows:

Parameter Blackboard Key Name Description

p_api_version Constant The version number for the API. This value is
pre-set and does not need to be changed.

p_org_contact_id P_ORG_CONTACT_ID Required field. If using the building block script
iesupdct.scr, this is set to the Blackboard value for
the blackboard key name of PARTY_CONTACT_ID.
The blackboard key of PARTY_CONTACT_ID
retrieved in the Group Get_Party_And_Contact_
Information.

p_party_site_id x_party_site_id Required field. The party site associated with the
contact.If using the building block script iescustr.scr,
this is set to the value of the blackboard key of x_
party_site_id. The blackboard key for x_party_site_
id is set by the Post Action on the group called
Create Party Site, which invokes the reusable
command ies_create_party_site.

p_user_name IES_FND_USER_NAME Agent login name for the individual running the
script or survey. This is a required field, but it does
not need to be changed, as the IES_FND_USER_
NAME is automatically set. If the script is executed
via a survey, this is the Guest User login (JTF Guest
User, as described in the Oracle Scripting
Implementation Guide, release 11i).

Parameter Blackboard Key Name Description

x_msg_count x_msg_count Tells the number of error messages in the message
stack.

x_msg_data x_msg_data A concatenated error message.

Seeded Command Detail

Seeded Script Author Commands 3-33

3.3.13 Update Party Site

Description
Updates the contact information for a contact in an organization.

Prerequisites
A contact in an organization must already exist.

Package Name
IES_TCA_BP_PKG.update_party_site

Associated Building Block Script Name
iesupdct.scr (Update Existing Contact Within an Organization building block). This
script retrieves an existing contact within an organization, then allows the user to
update the contact name and address information

Input Parameters
The parameters passed by this seeded command are as follows:

x_return_status x_return_status S - Success

E - Error

U - Unexpected error

Parameter Blackboard Key Name Description

p_api_version Constant The version number for the API. This value is
pre-set and does not need to be changed.

p_party_site_id P_PARTY_SITE_ID Required field. The Party_Site_ID of the
organization to whom this contact is attached. If
using the building block script iesupdct.scr, this is
set to the blackboard value for the blackboard key
name of P_PARTY_SITE_ID. The blackboard key of
P_PARTY_SITE_ID is set in the group Get_Party_
And_Contact_Information.

Parameter Blackboard Key Name Description

Seeded Command Detail

3-34 Oracle Scripting Developer’s Guide

Output Parameters
The parameters retrieved are as follows:

p_user_name IES_FND_USER_NAME Agent login name for the individual running the
script or survey. This is a required field, but it does
not need to be changed, as the IES_FND_USER_
NAME is automatically set. If the script is executed
via a survey, this is the Guest User login (JTF Guest
User, as described in the Oracle Scripting
Implementation Guide, release 11i).

Parameter Blackboard Key Name Description

x_msg_count x_msg_count Tells the number of error messages in the message
stack.

x_msg_data x_msg_data A concatenated error message.

x_return_status x_return_status S - Success

E - Error

U - Unexpected error

Parameter Blackboard Key Name Description

Oracle Scripting Building Blocks 4-1

4
Oracle Scripting Building Blocks

A building block is a portion of a Script Author script that contains functionality
integrating with other Oracle Applications. Building blocks typically contain one or
more API and typically perform a task-based operation such as creating a service
request, registering for an event, and so forth.

The first building block listed includes flows to create a customer in the database,
including contact, party, and organization information typically required in the
TCA schema.

The next building block retrieves an existing customer from the database. The
remaining building blocks also retrieve an existing customer from the database as
part of their flow. It is necessary to retrieve a customer in order to perform a
task-based operation. Thus, understanding of the Retrieve Customer building block
component is crucial to using and customizing the remaining building blocks. The
details of the retrieve customer building block are therefore detailed below.

Building blocks are not intended to be used as stand-alone scripts, but are expected
to be imported into a graphical script and modified as appropriate. These are
provided on an as-is basis. Use of building blocks requires customization, which is
not supported.

This section includes the following topics:

Section 4.1 "Overview of Building Blocks"

Section 4.2 "How to Use Building Blocks"

Section 4.3 "Summary Information on the Building Block Scripts"

Section 4.4 "The Retrieve Customer Building Block Script (iesrcust.scr)"

Overview of Building Blocks

4-2 Oracle Scripting Developer’s Guide

4.1 Overview of Building Blocks
You can set up a script or survey so that it either "hard codes" all of the parameter
values for a reusable command, or so that it interactively prompts the end user for
the required values at runtime. If you choose to prompt for values for the command
parameters in a script or survey (for instance, by allowing a customer or prospect to
choose a specific fulfillment item from a drop-down menu of fulfillment items), you
must set up the script so that it performs a query against the appropriate database
tables and then displays a list of valid choices to the user at runtime. Likewise,
when creating a lead, you need to set the values of a number of parameters, and
these values must be valid. In other words, you can't create a lead for a customer or
prospect who does not yet exist. Nor can you create a lead for a product that is not
stored in the product tables of the applications database.

In order to make it easier for you to perform necessary queries against data in CRM
tables, we have supplied several sample "building block" scripts that can be
imported into your custom scripts. There is a building block script associated with
each of the seeded reusable commands. The goal of each building block script is to
provide a sample framework which performs the following:

■ Works in conjunction with Oracle Telesales and Collections to retrieve customer
information such as PARTY_ID from Oracle Telesales and Collections

■ Provides query blocks to retrieve lists of values from the CRM schema for
command parameters that must reference valid values in CRM tables

■ Provides panels, questions, and answers that use the Blackboard Command
values that are used as parameters in the reusable command.

4.1.1 Building Blocks Versus Seeded Reusable Commands
The differences between a building block script and a reusable command is that the
building block script is designed as a dialog (script) that interactively guides a user
through questions used to gather information for a particular function. A seeded
reusable command is simply a command that provides you a parameter list, for
which you must supply values. The building blocks and seeded reusable
commands work together in the sense that the building block scripts use the
Blackboard Key Name values as the questions for the information asked during
runtime; once all the questions have been answered, the building block script
invokes the appropriate seeded reusable command and all of the necessary
parameters have been provided in order for it to execute successfully.

In the section on each reusable command, the associated building block which you
can use in conjunction with the command is indicated. Again, please note that you

Overview of Building Blocks

Oracle Scripting Building Blocks 4-3

can choose to "hard code" the values for all of the command parameters for each
seeded reusable command, or you can use a combination of hard coding and
interactively obtaining user input for the required parameters.

4.1.2 General Structure of a Building Block Script
The building block sample scripts are designed to work on their own, so you can
open them in the Script Author, deploy them to the Scripting database, and then
run them from an account that has the Oracle Telesales Agent responsibility, or by
creating survey campaigns that reference each building block script and deploying
the building block scripts as surveys. These scripts can also be imported into any
script or survey that needs to incorporate the building block functionality.

The general structure of a building block script is the following:

■ An introductory panel which has panel text that describes the purpose of the
script and lists the reusable commands used within the script.

■ A group that retrieves an existing party (organization) and person (contact)
from the customer schema. This group consists of several panels that first check
to see if a calling application (such as Oracle Telesales) has already set the value
for the party and contact; if not, it will query the user for this information.

■ A panel or group that collects the information that a customer/prospect needs
to supply in order to invoke the reusable command and perform the business
task. For example, the Create Collateral building block script contains a group
that looks up the customer's e-mail address, provides a list of available
collateral by looking up the information in the One to One Fulfillment table,
then allows the user to define the subject and content for the e-mail message.

■ Likewise, the Lead Creation building block script provides a series of queries of
values in the tables and prompts the user to provide budget status, budget time
frame, select a primary product interest, etc.

■ A panel or group that performs that actually invokes the reusable command
and checks the status of that action. For example, in the Lead Creation building
block, this group invokes the Lead Creation API, checks the status, and reports

Note: This group is not required if the building block is included
as part of another script that already performs this sort of
functionality.

How to Use Building Blocks

4-4 Oracle Scripting Developer’s Guide

the Lead ID to the user. (If the Lead API fails for any reason, it also displays an
error message stating the problem).

4.1.3 Location of Building Block Scripts
The building block sample scripts are placed on the 11i APPL_TOP in the directory
$IES_TOP/scripts.

4.2 How to Use Building Blocks
1. Open and deploy a building block script.

2. Run the building block in the Scripting Engine agent interface to ensure its
functionality.

3. Open the building block in the Script Author and examine it, familiarizing
yourself with aspects such as:

■ From where commands are executed (pre-actions, post-actions, etc.)

■ What existing validation is used, if any, or if validation is required to be
added

■ Whether you can see the existing text and graphics in panels, and if existing
panel content meets your requirements

4. Incorporate the building block into an otherwise tested and fully functional
script.

5. Test the script to ensure that it functions as imported.

6. Modify the building block within the context of the script as required.

4.3 Summary Information on the Building Block Scripts
There are 8 different building block scripts available. They can each be deployed
and run alone, or incorporated within other scripts. Each of these scripts invokes
several of the reusable commands: they all either retrieve or create a customer and
organization, then perform a specific business task by using the reusable commands
associated with that task.

They are:

The Retrieve Customer Building Block Script (iesrcust.scr)

Oracle Scripting Building Blocks 4-5

4.4 The Retrieve Customer Building Block Script (iesrcust.scr)
The Retrieve Customer building block Script should be considered for use in any
script that requires customer contact information or which requires using any CRM
APIs. This building block sets four important Blackboard Key Names:

Building Block Script Description

iescustr.scr This script creates a contact (name and address information), a
party, a party location, and an organization type in the TCA
schema.

iesrcust.scr This script retrieves an existing contact within an organization.
This script is structured in a way that allows it to retrieve all of
the information about the contact and organization in order to
perform any of the other reusable commands. More detail on
this building block is described below.

iescltrl.scr This script retrieves an existing contact within an organization
and then allows the user to select from a list of available
collateral. It allows the user to specify the e-mail address, subject
line, and additional notes, then invokes the One to One
Fulfillment API to create collateral.

iesevent.scr This script retrieves an existing contact within an organization,
then allows the user to register that contact for an event.

 iesintc.scr This script retrieves an existing contact within an organization,
then creates an interest at the contact level.

iesinto.scr This script retrieves an existing organization, then creates an
interest at the organization level.

ieslead.scr This script retrieves an existing contact within an organization,
then creates a lead.

iesupdct.scr This script retrieves an existing contact within an organization,
then allows the user to update the contact name and address
information.

Blackboard Key Description

PARTY_ID The ID for an organization. This is set by Oracle Telesales
eBusiness Center form when you query by Party or Party_
Organization. If the value is not set when the script is launched,
the Retrieve Customer building block will collect this ID from
the user.

The Retrieve Customer Building Block Script (iesrcust.scr)

4-6 Oracle Scripting Developer’s Guide

CONTACT_ID The Contact_ID for a contact (person) in an organization. The
script prompts the user to select a contact from a list of values
based on a query of all contacts for the organization identified
by the PARTY_ID.

PARTY_CONTACT_ID Once a contact has been selected, this value is automatically set
based on the selected contact.

P_PARTY_SITE_ID Once a contact has been selected, this value is automatically set
based on the selected contact.

Blackboard Key Description

Best Practice Surveys 5-1

5
Best Practice Surveys

Oracle Corporation provides some pre-built survey questionnaire scripts flows to
serve as examples of how to customize graphical scripts specifically intended for
use as survey questionnaires. Aspects of these scripts can also be used in graphical
scripts to be executed in the agent interface.

This section includes the following topics:

Section 5.1 "Best Practice Survey Script Considerations"

Section 5.2 "Location of Best Practice Survey Scripts"

Section 5.3 "Description of Best Practice Survey Scripts"

5.1 Best Practice Survey Script Considerations
Best practice survey scripts can be used as-is. Note, however, that some words in
panel text such as PRODUCT or COMPANY are used. You may want to customize
these before deploying.

For some survey scripts, certain questions are broken out into multiple panels. The
purpose for this approach is to make it easier for you to remove unwanted
questions or add additional branching logic for a given question based on your
survey campaign’s specific requirements.

Additionally, best practice surveys are built to ask the most important questions
first. If your survey campaign priorities differ, you may wish to rearrange the script
flow to put panels asking the most crucial data first.

How you ask a question is critical to the quality of data received. In order to receive
meaningful data, consider the end results. How will the reporting data be used? Are
you providing appropriate choices for a survey respondent to allow you to collate

Location of Best Practice Survey Scripts

5-2 Oracle Scripting Developer’s Guide

data appropriately, and clearly differentiate between a positive, negative, or neutral
opinion?

Best practice survey scripts are provided on an as-is basis. Be aware that best
practice surveys, once customized, are not supported.

5.2 Location of Best Practice Survey Scripts
The best practice survey scripts are placed on the 11i APPL_TOP in the directory
$IES_TOP/scripts.

5.3 Description of Best Practice Survey Scripts
The table below lists the file name of each best practice survey script, its global
script name (the name referenced when deployed to the database), and a
description of the purpose for each survey script.

File Name Global Script Name Description

iespship.scr BP Product Shipment
Followup

Set of typical survey questions to ask after a product is
shipped to determine customer satisfaction. If customer is
dissatisfied, gathers customer reasons.

 iesesrfb.scr BP Electronic SR Follow
Up Survey

Set of questions to determine customer satisfaction following a
service request. If customer is dissatisfied, prompts customer
for callback information.

ieswebin.scr BP Web Content
Feedback

Survey that can be placed on a Web site to get customer
feedback regarding the Web site.

 iescwsat.scr BP Courseware
Evaluation

Survey evaluating satisfaction after taking a course or training
program.

ieshitch.scr BP HiTech Support
Customer Sat

Detailed survey to determine customer satisfaction on
customer support for high-tech industries.

 iesevtfb.scr BP Event Followup Survey to measure satisfaction with an event, including
specific flows to determine effectiveness of delivery channels
such as teleconference call, Web seminar, or live contact.

iesnewcr.scr BP New Customer
Followup

New customer survey requesting information on a customer’s
reason for purchasing, competitive advantages to the product
purchased, and overall product satisfaction.

iescgsat.scr BP Generic Customer
Satisfaction

Generic customer satisfaction survey, not associated with any
particular event.

Customizing Panel Layouts 6-1

6
Customizing Panel Layouts

The Script Author provides three ways to customize panel layouts for graphical
scripts:

1. Using the panel layout editor. This is an integrated component which provides
script developers with a convenient method for creating and editing simple
formatted panel content without writing HTML code.

2. Using third-party HTML generation and editing tools. For complex or
feature-rich panel layouts, HTML content can be created externally and
imported into a script. Using Oracle Scripting-specific HTML tags, the entire
panel content, including all answer definitions and answer user interface
controls, can be generated in custom HTML and imported into the script.

3. Using the panel layout editor in combination with custom HTML editing tools.
If desired, answers can be defined from the Answer Entry Dialog window, and
content can be created in the panel layout editor, and then exported as HTML,
enhanced externally, and imported back into the script. Any previous answer
definitions and all panel content and formatting is replaced by the imported
panel content.

Knowledge of custom Oracle Scripting HTML syntax for is required.

This section includes the following topics:

Section 6.1, "Purpose and Limitations of the Panel Layout Editor"

Section 6.2, "HTML Restrictions in the Scripting Engine"

Section 6.3, "Oracle Scripting Custom HTML Syntax"

Section 6.4, "Procedures for Customizing Panel Layouts"

Purpose and Limitations of the Panel Layout Editor

6-2 Oracle Scripting Developer’s Guide

6.1 Purpose and Limitations of the Panel Layout Editor
The Script Author includes a panel layout editor, which provides script developers
with a convenient method for creating and editing simple panel content without
writing HTML code. This simple graphic interface provides users with the ability to
enter and format simple panel content, and manipulate typeface, font size and color,
create bulleted and ordered lists, and more. In addition, it serves as the way to
produce syntactically correct HTML content for Scripting-specific features (such as
embedded values) without having to learn custom Oracle Scripting HTML tags and
syntax. Answers and text can be interspersed and formatted as desired. The panel
layout editor includes one-click formatting of text into two distinct styles,
instructional text and spoken text. This provides script developers a consistent,
rapid method to format text differently in the panel layout editor to indicate text an
agent would speak (or a customer would read) that relates directly to the matter at
hand, and to format text providing the script end user with specific instructions.

Nonetheless, for creating any complex layout, and using features of HTML such as
tables, it is expected that script developers will use full-function third-party HTML
editors (or code HTML by hand) and simply import the HTML content into the
Script Author.

This combination ultimately delivers a solution that combines ease of use for
simpler implementations with a high level of flexibility for implementations that
have unusual or complex requirements. To support this model, this section includes
Scripting-specific HTML tags and syntax.

6.2 HTML Restrictions in the Scripting Engine
All panel content, whether created in the panel layout editor or externally, renders
as Hypertext Markup Language (HTML) in the Scripting Engine runtime interface.
Each interface is subject to its own set of restrictions, as well as restrictions that
apply to both interfaces.

This section includes the following topics:

Section 6.2.1, "Restrictions for Web and Agent Interfaces"

Section 6.2.2, "Web Interface Restrictions"

Section 6.2.3, "Agent Interface Restrictions"

HTML Restrictions in the Scripting Engine

Customizing Panel Layouts 6-3

6.2.1 Restrictions for Web and Agent Interfaces
Regardless of which interface is used, there is a translation issue affecting all scripts.
When a panel created in the panel layout editor contains any answer UI type other
than button, a Continue button is automatically generated. (For more information,
see Section 6.3.2.4, "Continue Button Panel Syntax"). The value that appears in the
control at runtime will read "Continue" unless the panel HTML is edited. Thus, for
languages other than English, all panels (other than those with a single button UI
answer control, as discussed in Section 6.3.2.3, "Button Answer UI Panel Syntax")
will require modification of panel HTML to translate the value "Continue" to the
appropriate language.

6.2.2 Web Interface Restrictions
When developing scripts to execute in the Scripting Engine Web interface, you
should be aware of the following restrictions, described in detail below:

■ HTML interpretation differs by browser

■ JavaScript and JScript Support

■ Agent UI components not included in Web interface

HTML Interpretation Differs by Browser
In the Web interface, script HTML (executed as a survey questionnaire) is
interpreted by the HTML engines afforded by the particular Web browser used.
Thus, survey questionnaires may appear differently when rendered in Microsoft
Internet Explorer than they do in Netscape Navigator. Differences may also appear
between various releases of the same browser software.

JavaScript and JScript Support
JavaScript is a scripting language intended to execute within any
JavaScript-compliant Web browser. All current Web browsers certified for use with
Oracle Applications release 11i are JavaScript-compliant.

HTML Restrictions in the Scripting Engine

6-4 Oracle Scripting Developer’s Guide

■ For the purposes of this document, scripts created in JavaScript or JScript are
referred to as JavaScripts.

■ Despite the name, JavaScript and the Java programming language are separate
and distinct. JavaScripts can be included in custom panel text for a panel object
in the Script Author, if that script will be executed in a Web browser.

There are two approaches to including JavaScripts into panel HTML.

1. Create a complete and syntactically correct panel in the Script Author, and
then export the panel HTML. Edit the HTML to include the JavaScript as
appropriate.

2. Identify all requirements for the panel which requires JavaScript, and using
a compliant HTML editor or text editor, write the HTML and JavaScript
code for the panel. Then, from the Script Author, import the code into the
appropriate panel.

For more information, see Section 6.4.4, "Exporting Panel Text, Adding
JavaScript, and Importing".

Agent UI Components Not Included in Web Interface
When scripts execute in the agent interface, the panels appear in a large work area.
Above the panels, if programmed into the script’s global properties, the script
information area appears, and below this (if defined), shortcut buttons are included.

Note: Microsoft Corporation has created a competing technology
to JavaScript known as JScript. Due to browser-specific differences
in internal script interpretation, scripts that execute perfectly in one
Web browser may not function the same way in a different Web
browser (including a different version of the same browser
software). JavaScript and JScript developers must be certified in the
appropriate relevant technologies and should take browser
incompatibilities into account. Further, if scripts are intended for
execution in the Web interface, developers must take care to ensure
any JavaScripts or JScripts used will support both Netscape
Navigator and Microsoft Internet Explorer.

Caution: JavaScript is not supported for scripts executed in the
agent interface and should not be used.

HTML Restrictions in the Scripting Engine

Customizing Panel Layouts 6-5

A progress panel shows the active script’s history to the right of the agent work
area. All of these components are surrounded by a frame. At the bottom, right-hand
side of the frame, a Disconnect button appears.

For scripts executed in the Web interface, only panels are rendered in the browser.
Regardless of whether a script includes defined shortcuts, or timers or text
programmed to appear in the script information area, these will not appear in
scripts executing in a browser, and will not be accessible at runtime. The progress
area will also not appear; to back up in a script executed in the Web interface, use
the browser’s Back button. Finally, the frame enclosing the script in the Web
interface is the actual Web browser window. Thus, there is also no Disconnect
button. The only way a wrap-up group can be accessed is by proceeding through
the appropriate flow or flows in the script.

Generally, scripts created for one runtime interface will execute in the other.
Nonetheless, the differences noted above must be considered to ensure appropriate
flow in scripts executed in the Web interface. Scripts that meet an enterprise’s
requirements in the agent interface will also be lacking script information area
headers, shortcut buttons, the progress area and the disconnect button, and may
therefore not meet the same set of requirements when executed in the Web interface.
This fact should be noted by sales, support, technical and functional consultants,
and those interaction center staff members responsible for ensuring project
requirements are fulfilled.

6.2.3 Agent Interface Restrictions

Swing and HTML Incompatibilities
In the Java-based agent interface, script HTML interpretation and rendering is
provided by the Swing Java classes compatible with JavaSoft's Java Development
Kit (JDK) 1.1.8.

While this entire area of Swing has been rewritten and is much improved in JDK
1.3, Scripting is unable to upgrade its version of Swing until all Oracle Applications
upgrades to JDK 1.3 as well. Consequently, scripts executed in the agent interface
inherit the HTML incompatibilities created by using the older version of swing. The
following are known issues with this version of Swing for HTML rendering:

■ Horizontal alignment of containers. While Swing does support alignment of
individual elements, it cannot handle alignment of tables and logical containers
(as specified by the <div>...</div> tag).

Oracle Scripting Custom HTML Syntax

6-6 Oracle Scripting Developer’s Guide

■ Table width attribute. The "width=<pixel value or percentage>" attribute of the
<table>...</table> tag is ignored by Swing.

■ Avoid use of the
 (break) tag. Swing has known issues with HTML that
uses the
 tag. One option is to use paragraph tags instead. For example,
use:

 <p> </p>

■ Use well-formed HTML only. Swing is known to have problems with HTML
that is not well-formed; that is, all start tags should have corresponding end
tags (e.g. <p> should always have a corresponding </p>).

HTML 3.2 Compatibility
The HTML specification used for this version is HTML 3.2. Tags from later HTML
specifications, including HTML 4.0, may not appear as expected when executed in
the agent interface. Consequently, rigorous testing should be performed for all
custom scripts including custom HTML code.

JavaScript and JScript
JavaScript and JScript are not supported for scripts executed in the agent interface
and should not be used.

6.3 Oracle Scripting Custom HTML Syntax
When defining an answer in the Script Author, the following answer user interface
types are supported: Text fields, text areas, radio buttons, checkboxes, buttons,
drop-down lists, password fields, checkbox groups and multi-select list boxes. Each
of these answer UI control types has its own corresponding properties (discussed in
detail in the Understanding Answers section of Oracle Scripting User Guide).
Additionally, several of these answer UI control types have unique HTML tags,
attributes, and syntax. Custom syntax for these answer UI types are summarized in
the table below.

Answer UI Type HTML Tag Set Control Definition Syntax

radio button <rbgroup>...</rbgroup> <input name="answer definition name" type="radio">

checkbox group <cbgroup>...</cbgroup> <input name="answer definition name" type="checkbox">

button group <pbgroup>...</pbgroup> <input value="pbLabel" name="answer definition name"
type="submit">

Oracle Scripting Custom HTML Syntax

Customizing Panel Layouts 6-7

Individuals editing or creating panel text external to the script author must be
familiar with and follow the appropriate syntax for any panel in order for custom
HTML to function within a script. Additionally, when editing or creating radio
buttons, buttons, or checkbox groups, answer UI-specific custom syntax must be
included.

This section includes the following topics:

Section 6.3.1, "Panel-Level HTML Requirements and Syntax"

Section 6.3.2, "Answer UI-Level HTML Requirements and Syntax"

6.3.1 Panel-Level HTML Requirements and Syntax

Panel HTML Requirements
In panel HTML created by the panel layout editor, an HTML table is automatically
generated in the body of the HTML document. This table starts just above the first
node (also known as a question or an answer definition).

In the HTML tags defining the table, the table has a name property, which must
contain the value "IES_ControlManifest". The tag, when generated by the panel
layout editor, appears as follows:

<table name="IES_ControlManifest" border="0" width="100%">

Any panel text or graphic image that appears after the first question and before the
last question appears inside this table.

If the panel contains a button, there is only one answer definition allowed. In this
case, the table ends after the button definition.

If the table uses one or more answer UI types other than button, this table ends after
the last answer definition and immediately before the Scripting-generated Continue
button. This is an HTML forms input control which generates a submit button at
runtime with the value "Continue." Clicking this button at runtime submits a
request resulting in the progression in the script from this panel to the next object in
the chosen flow of the script. Since only panels display at runtime, each object in
sequence will execute appropriately until a panel is reached. This next panel
displays in the runtime engine. The syntax for this HTML forms submit button is as
follows:

<input name="IES_CONTINUE" value="Continue" type="submit">

Oracle Scripting Custom HTML Syntax

6-8 Oracle Scripting Developer’s Guide

For languages other than English, the value "Continue" must be edited to contain
the appropriate translated value. Other buttons provided by the user interface
(other than answer lookup values) are controlled by applications-level and
foundation component-level settings. For translation purposes, this is a unique
requirement.

To summarize, panel HTML syntax and requirements include the following:

■ Table tag must begin before first answer and have the name IES_
ControlManifest.

■ Button must follow custom panel UI syntax and be included in the table.

■ Radio buttons and checkbox groups also have custom panel UI syntax that
must be followed.

■ For answer UI controls other than button, submit button appears below the
answers table. This input control must have the name IES_CONTINUE and be
of type "submit."

■ For custom edited HTML, nested tables are allowed in HTML 3.2-compliant
form.

If generating all panel content and answer UI controls externally in HTML, these
elements are required, in addition to specific answer UI-level HTML requirements
and syntax. If editing panel HTML, these requirements must be maintained.

Script Panel HTML Syntax and Rules
1. Panel HTML must conform to the HTML 3.2 specification and should be

editable in any HTML 3.2 compatible editor. Special syntax required for
Scripting is enclosed in custom tags and should not be modified.

2. Use well-formed HTML. Even though HTML is a loosely typed language that is
largely fault-tolerant, Oracle Scripting enforces many HTML syntax rules that
some Web browsers typically don’t enforce. All start tags should have
corresponding end tags. For example, all start paragraph <p> tags should
always have a corresponding end paragraph </p> tag. As another example,
while most Web browsers will display an entire HTML page even if the close
body </body> and close HTML </html> tags are excluded, the Scripting
Engine agent interface will not. The requirement for these tags is part of the
HTML 3.2 specification and will be enforced in Oracle Scripting, especially in
panels containing embedded values. Panels missing these closing tags can
cause a failure during syntax checking and script deployment.

Oracle Scripting Custom HTML Syntax

Customizing Panel Layouts 6-9

3. Except for panels with a button answer UI type, every panel must have one and
only one continue button, containing the following syntax:

<input value="<LABEL>" name="IES_CONTINUE" type="submit">

where the only variable is <LABEL>, which may contain any string. This string
will be displayed as the button label and typically contains the value Continue.

4. For every answer UI control or control group in panel HTML, there must be a
corresponding answer definition (with the same name) in the panel.

■ If creating panel answers externally in custom HTML, you will be able to
view the corresponding answer definition properties in the panel’s Answer
Entry Dialog window after importing. Note that, after importing, the only
answer properties you should modify from the Script Author are the Name
and Default for distinct branching option. The answer UI type is not
accessible, and although the label for reporting appears to be modifiable,
the changes will not be recognized by the Scripting Engine.

■ If you create panel answer definitions in the Script Author and
subsequently export panel HTML, make modifications, and re-import, any
changes made to answer properties (including name and UI type) and any
changes or additions made to the panel text and any panel images will
overwrite the prior information.

5. No two controls in the same panel HTML may have the same name.

6. While HTML allows you to provide lookup choices and default values for fields
as part of a control tag's attributes, these will be ignored by Oracle Scripting.
Instead, lookup choices for scripts executed by the Scripting Engine are derived
at runtime from lookups defined in the Script Author data dictionary's Lookups
tab: specified lookup values, or values provided by a table, cursor or command
lookups. Default values are also derived at runtime as the return value of a
default command, defined in the Script Author data dictionary's General tab.

Panels containing a button answer UI control are not allowed to contain any other
answer definitions in the panel. The button must be selected as the trigger for
distinct branching. In other words, the Default for distinct branching option must
be selected for panels with a button answer UI.

Any other answer UI control type can appear by itself or with any combination of
other answer UI types.

Excluding panels containing a multiple-selection answer UI type (checkbox group
or multi-select list box), each panel must have one node or answer definition that is
selected as the trigger for distinct branching.

Oracle Scripting Custom HTML Syntax

6-10 Oracle Scripting Developer’s Guide

6.3.2 Answer UI-Level HTML Requirements and Syntax
For answer UI types that take lookup values, the number of buttons to be displayed
and their labels are determined at runtime. Thus, despite the introduction of the
What-You-See-Is-What-You-Get (WYSIWYG) paradigm, there is no way to have a
WYSIWYG display of button, radio button, drop-down or multi-selection list, or
checkbox group controls in the panel layout editor. When these answer UI types are
viewed in the panel layout editor, a single control of the appropriate type is
displayed, with no values. Instead of the lookup value, generic labels appear next to
the appropriate control: rbLabel for radio buttons, cbLabel for checkbox groups,
pbLabel for buttons. Labels (as populated in the Label for reporting field of the
Answer Entry Dialog window) will render in the panel layout editor as well as at
runtime.

In the panel HTML, a single set of custom tags defines the answer control. There is
specific syntax associated with the button, radio button, and checkbox group
answer UI controls. This syntax, which is built automatically with the panel layout
editor, must be maintained in order for the panel to function at runtime.

Using the appropriate stands, answer UI controls can also be defined externally
using a text editor or HTML generation and editing tool.

This section includes the following topics:

Section 6.3.2.1, "Radio Button Answer UI Panel Syntax"

Section 6.3.2.2, "Checkbox Group Answer UI Panel Syntax"

Section 6.3.2.3, "Button Answer UI Panel Syntax"

Section 6.3.2.4, "Continue Button Panel Syntax"

Section 6.3.2.5, "Embedded Value Syntax in Panel Text"

6.3.2.1 Radio Button Answer UI Panel Syntax
This section describes syntax for the custom Oracle Scripting radio button group
HTML tag set:

<rbgroup> ... </rbgroup>

Note: Code samples for HTML may exclude spaces or special
characters. For example, the ASCII symbol for a space ()
appears in panel layout editor-generated HTML but is generally
excluded in this document.

Oracle Scripting Custom HTML Syntax

Customizing Panel Layouts 6-11

Within the open and close radio button group tag set, there are two required tags,
which can appear in any order, and can be surrounded by any valid HTML content.

One required tag is the radio button definition:

<input name="answer definition name" type="radio">

The name attribute includes the answer definition name, surrounded by quotes.
This attribute associates the HTML control with its panel node or answer definition.

The other required tag is the radio button label definition tag set. The tags include:

<rblabel>rbLabel</rblabel>

Since the actual labels of the individual radio buttons will be determined at
runtime, this tag set, including the single rbLabel, appears once in panel HTML
(when reviewed before runtime), regardless of how many lookups you define. This
serves as a placeholder into which the Scripting Engine at runtime will dynamically
insert code for each defined lookup, one per radio button value. For example,
consider a radio button group with three lookup values defined, one for each
available flavor of an ice cream sundae. Each lookup value includes a display value
and the actual value passed by the application (in this example, chocolate/c,
vanilla/v and strawberry/s).

The panel HTML for this example appears as follows:

<rbgroup>
 <input name="flavors" type="radio">
 <rblabel>LookupValue1</rblabel>
 </rbgroup>

At runtime, all custom tags above, starting with the rbgroup tag set, are replaced
dynamically. For each lookup value, an instance of the input tag is generated, coded
with the value of that lookup. Thus, continuing the above example, the HTML code
that actually displays might appear as follows:

<p><input name="flavors" type="radio" value="c">chocolate</p>
<p><input name="flavors" type="radio" value="v">vanilla</p>
<p><input name="flavors" type="radio" value="s">strawberry</p>

6.3.2.2 Checkbox Group Answer UI Panel Syntax
This section describes syntax for the custom Oracle Scripting checkbox group
HTML tag set:

Oracle Scripting Custom HTML Syntax

6-12 Oracle Scripting Developer’s Guide

<cbgroup> ... </cbgroup>

Within the open and close checkbox group tag set, there are two required tags,
which can appear in any order, and can be surrounded by any valid HTML content.

One required tag is the checkbox group definition:

<input name="answer definition name" type="checkbox">

The name attribute includes the answer definition name, surrounded by quotes.
This attribute associates the HTML control with its panel node or answer definition.

The other required tag is the checkbox label definition tag set. The tags include:

<cblabel>cbLabel</cblabel>

Since the actual labels of the individual checkboxes in this checkbox group will be
determined at runtime, this tag set, including the single cbLabel, appears once in
panel HTML (when viewed before runtime) regardless of how many lookups you
define. This serves as a placeholder into which the Scripting Engine at runtime will
dynamically insert code for each defined lookup, one per checkbox value. For
example, consider a checkbox group with three lookup values defined, one for each
topping on an ice cream sundae. Each lookup value includes a display value and
the actual value passed by the application (in this example, sprinkles/s, chocolate
syrup/cs, and chopped nuts/cn).

The panel HTML for this example appears as follows:

<cbgroup>
 <input name="topics" type="checkbox">
 <cblabel>LookupValue1</cblabel>
 </cbgroup>

At runtime, all custom tags above, starting with the cbgroup tag set, are replaced
dynamically. For each lookup value, an instance of the input tag is generated, coded
with the value of that lookup. Thus, continuing the above example, the HTML code
that actually displays might appear as follows:

<p><input name="topics" type="checkbox" value="s">sprinkles</p>
<p><input name="topics" type="checkbox" value="cs">chocoloate syrup</p>
<p><input name="topics" type="checkbox" value="cn">chopped nuts</p>

Oracle Scripting Custom HTML Syntax

Customizing Panel Layouts 6-13

6.3.2.3 Button Answer UI Panel Syntax
This section describes syntax for the custom Oracle Scripting button group HTML
tag set:

<pbgroup> ... </pbgroup>

The button answer UI type can only be used when it is the single answer control
defined for a panel. The most typical use of the button answer UI type is to provide
a single value (such as "Continue") to advance the flow of the script. This answer UI
type also supports multiple lookup values for the single answer definition (thus the
designation of this tag set as a group). The result at runtime is that, for each lookup
defined, the display value appears as the text label of a button at the bottom of the
active panel. In panel layout editor-generated HTML, the series of buttons appear
horizontally, left-aligned, in succession. If necessary, second or subsequent rows of
buttons are right-justified.

Within the open and close button group tag set, there is a single required tag, the
button definition, which can be surrounded by any valid HTML content:

 <input value="pbLabel" name="answer definition name" type="submit">

The value attribute identifies this HTML string as a button. Unlike the other custom
Oracle Scripting tags, there is no separate label tag.

The name attribute includes the answer definition name. This attribute associates
the HTML control with its panel node or answer definition.

The type attribute identifies this control as a submit button.

The label tag is not supported for the button answer UI type. Therefore, any value
entered into the answer definition in the Label for reporting field is ignored.

For example, consider a button group with three lookup values defined, one for
each container type for an ice cream sundae. Each lookup value includes a display
value and the actual value passed by the application (in this example, small cup/sc,
large cup/lc and banana split/bs). However, only the display value for each button
(derived at runtime from lookup values defined) is included in the button’s HTML
content at runtime. Therefore, display values for multiple lookup choices for any
one button answer definition must be unique.

The panel HTML for this example appears as follows:

<pbgroup>
 <input value="pbLabel" name="containers" type="submit">
</pbgroup>

Oracle Scripting Custom HTML Syntax

6-14 Oracle Scripting Developer’s Guide

At runtime, all custom tags above, starting with the rbgroup tag set, are replaced
dynamically. For each lookup value, an instance of the input tag is generated, coded
with the value of that lookup. Thus, continuing the above example, the HTML code
that actually displays might appear as follows:

<p><input value="small cup" name="containers" type="submit"> </p>
<p><input value="large cup" name="containers" type="submit"> </p>
<p><input value="banana split" name="containers" type="submit"> </p>

6.3.2.4 Continue Button Panel Syntax
For panels containing answer UI types other than button, HTML code is required at
the bottom of the panel to display a submit button at runtime. The function of this
button is to progress the flow of the script from the current panel to the next object
in the flow (dynamically determined at runtime). This is referred to as the Continue
button.

Panels containing the button answer UI type use that control to progress the flow of
the script. As described in Section 6.3.2.3, "Button Answer UI Panel Syntax", that
answer control has its own distinct syntax requirements and rules.

When using the panel layout editor, HTML code is automatically generated for the
Continue button. If you are building panel content external to the Script Author,
this tag is required of all panels not containing the button answer UI type.

The attributes for this required tag can appear in any order, and can be surrounded
by any valid HTML content. The syntax for this control is:

<input value="Continue" name="IES_CONTINUE" type="submit">

The value attribute is automatically provided by the panel layout editor, and is
recommended for consistency. The contents of this attribute control the button label
at runtime. This attribute alone may be modified for this required tag.

Unlike the custom button answer UI type, the Continue button tag supports only a
single button.

6.3.2.5 Embedded Value Syntax in Panel Text
When embedded values are added to a panel layout, the Script Author stores values
toward the end of the HTML panel text in an embedded value string.

At the time of this writing, these values are stored after the close HTML tag. In
order to fix incompatibilities with some HTML editors, the location in panel HTML
where this string is stored will likely change in the future. Nonetheless, the presence

Procedures for Customizing Panel Layouts

Customizing Panel Layouts 6-15

of the iesembeddedvalue string, and its attributes, are required in order for the
commands contained in embedded values to function.

The structure for the embedded value string is as follows:

<!--iesembeddedvalue iesuid="[unique string]"
iescommandtype="[embedded value command type]"
iescommand="[command name]" iescommanditerate="[true or false]"-->

The iesuid value is a unique identifier string.

The iescommandtype value identifies the command type (e.g., "blackboard" for a
blackboard command).

The iescommand value is the name of the Script Author command.

The iescommanditerate value is a literal string of true or false, indicating whether
the parameter must iterate.

6.4 Procedures for Customizing Panel Layouts
This section includes the following topics:

Section 6.4.1, "Requirements for Answer Lookup Values"

Section 6.4.2, "Requirements for Panel Content"

Section 6.4.3, "Writing Panel Text Outside of the Script Author"

Section 6.4.4, "Exporting Panel Text, Adding JavaScript, and Importing"

6.4.1 Requirements for Answer Lookup Values
Of the nine supported answer user interface control types, four do not require
lookup values to be entered. These include the three text entry UI types (text field,
text area, and password field), and the single checkbox. Text entry answer UI types
take keyboard inputs or null values at runtime. The single checkbox control, which
takes a click or null value, displays its checkbox label from the Label for reporting
field.

All other answer UI types require lookups. These can be explicitly specified
(hard-coded) lookup values, or table, cursor, or command lookups.

For all answer UI types except button, a "Continue" submit button will
automatically be generated at the bottom of the panel, regardless of whether the
panel contains a single answer definition or many.

Procedures for Customizing Panel Layouts

6-16 Oracle Scripting Developer’s Guide

For the button answer UI type, you must define a lookup value.

6.4.2 Requirements for Panel Content
All panel content, regardless of whether it is generated from the Script Author only,
from custom HTML only, or a combination, requires at minimum:

■ One or more answer definitions.

■ The default for distinct branching attribute selected for one answer definition,
unless the panel contains a multiple-answer UI type such as checkbox group or
multi-select list box.

■ HTML code for a submit button, which allows the script to continue to the next
object in the flow at runtime.

Answer Definitions
■ Each panel in a script requires one or more answers to be defined.

■ If the answer user interface type is a button, there can only be a single answer
for that panel.

Default for Distinct Branching
The default for distinct branching attribute must be selected for one answer
definition per panel.

The only exception to this rule is a panel containing an answer definition of UI type
checkbox group or multi-select list box. Only one answer can direct the flow of the
script, whereas these answer UI types support multiple potential answers to the
same question/answer definition. Thus, panels containing one or more of these
answer UI types are absolved from this requirement.

■ Regardless of whether a distinct branch is used, each panel requires at least one
answer definition to be set as the trigger for distinct branching. This trigger is
set by checking the Default for distinct branching option in an answer
definition’s Answer Entry Dialog window.

Caution: Although the Script Author application does not
prohibit you from leaving the value and display value fields empty
for a button (resulting in a narrow button with no label at runtime),
this course of action is not recommended by Oracle Corporation
and is not supported.

Procedures for Customizing Panel Layouts

Customizing Panel Layouts 6-17

■ The Default for distinct branching option must be selected for panels with a
button answer UI.

■ If you have a panel with only one answer defined, it must be set as the trigger
for distinct branching (unless it is a checkbox group or multi-select list box).

■ Regardless of how many answers you define in a panel, only one can be set as
the default to trigger distinct branching. Thus, the last answer definition or
node for which this attribute was selected is the default for the panel.

Submit Button Code
An HTML submit button on every panel allows the script to continue to the next
object in the flow at runtime. This is either:

■ An explicitly programmed button answer definition following the custom
Oracle Scripting button syntax, or

■ A Continue button, generated automatically by the panel layout editor or
explicitly in custom panel HTML, following the custom Oracle Scripting
Continue button syntax.

6.4.3 Writing Panel Text Outside of the Script Author
You can write syntactically correct HTML for a panel outside of Scripting and
import the code into a script using the Script Author. With the introduction of
WYSIWYG panel editing as of release 11.5.6 and later, you can now create the entire
contents of the panel HTML, including answers, in custom-generated HTML.
Previously, answers were required to be created in the Script Author.

Requirements for Panel HTML Defined Using the Script Author
Before using an HTML editor or a text editor to create the panel HTML, you must
ensure you have all the required information to code. You will need:

■ Panel content, including:

■ Panel text (spoken and instructional text), including any formatting
requirements.

■ Hypertext links.

■ Images, in Graphics Format Interchange (GIF) or Joint Photographic
Experts Group (JPEG) format.

■ Answer properties, including:

Procedures for Customizing Panel Layouts

6-18 Oracle Scripting Developer’s Guide

■ The boolean value for default for distinct branching.

■ The answer definition name (sometimes referred to as the question name).

■ The answer UI type. The range includes text fields, text areas, radio buttons,
checkboxes, buttons, drop-down lists, password fields, checkbox groups
and multi-select list boxes.

■ Data dictionary properties.

■ Java Bean properties are no longer supported for answers in a panel. No
information should be provided in the Answer Entry Dialog window in this
section. You can still replace an entire panel with a Java bean.

■ Data dictionary properties. Data dictionary properties may be defined for each
answer definition. Possible data dictionary properties include:

■ Validation commands, to validate the answer provided at runtime.

■ Default commands, to provide a constant value for an answer.

■ Data sources, linking to tables to obtain answers from a database table.

■ Table information, to connect to database tables

■ Lookup reference information, to provide table, cursor, or command
lookups, or to specify hard-coded lookup values as choices for each answer.

If creating a script for subsequent HTML modifications, you may want to use the
Script Wizard to first generate a syntactically correct script, and then convert it to a
graphical script, from which you can import custom HTML.

The Data Dictionary
Data dictionary properties may be defined for each answer definition. A separate
data dictionary is maintained for each answer definition in a panel. Possible data
dictionary properties include:

■ Validation commands, to validate the answer provided at runtime.

■ Default commands, to provide a constant value for an answer.

■ Data sources, linking to tables to obtain answers from a database table.

■ Table information, to connect to database tables

■ Lookup reference information, to provide table, cursor, or command lookups, or
to specify hard-coded lookup values as choices for each answer.

Procedures for Customizing Panel Layouts

Customizing Panel Layouts 6-19

Some answer UI types require data dictionary properties to be defined. For
example, buttons, radio buttons, drop-down lists, multi-select list boxes and
checkbox groups require, at minimum, lookups to be defined.

Text entry answer UI types (text fields, text areas and password fields) do not
require any data dictionary properties to be specified. Nonetheless, data dictionary
properties may be defined for any answer UI type. For example, password fields
display asterisks when text is entered at runtime. However, without the script
developer explicitly associating validation to an answer definition in the data
dictionary, no validation is performed on password fields.

Drop-down lists and radio buttons only have binary validation. In other words,
when an answer definition of one of these types is either the only answer definition
in a panel, or is set as the default for distinct branching, the Scripting Engine will
not allow the script end user to bypass either of these controls and progress to the
next panel without the user first selecting an option from the control. Technically,
the button answer UI type can also be considered to have binary validation, because
a panel containing an explicitly defined button (which does not allow any other
answer controls) must receive a button click in order to progress to the next panel.

6.4.4 Exporting Panel Text, Adding JavaScript, and Importing

Prerequisites
■ Write the JavaScript code.

■ Create a syntactically correct panel, including answer definitions.

■ Identify the panel into which JavaScript will be included.

Steps
1. Create a complete and syntactically correct panel in the Script Author.

2. If the script is created using the Script Wizard, graph the script (convert it to a
graphical script). From the Script Manager wizard window, select the
appropriate script and click Graph.

Note: Be aware that the standard checkbox answer UI type (as
opposed to the checkbox group) obtains its contents not from a
lookup value in the data dictionary, but rather from the Label for
reporting field in the Answer Entry Dialog window.

Procedures for Customizing Panel Layouts

6-20 Oracle Scripting Developer’s Guide

3. Open the panel layout editor for the panel.

4. From the File menu, select Export.

The Save window appears.

5. From the Location list and files displayed in the Files window, select the
location on your network or filing system where you want to save the exported
file.

6. In the File Name field, type the name you want to assign to the exported panel
code, and click Save.

l

7. Using a text editor or an HTML, modify the HTML code to include your
JavaScript, and save your work.

8. In the Script Author, open the panel properties for the panel you edited.

9. From the panel properties tree, select Panel Layout.

10. In the Panel Layout pane, click Panel Layout Editor.

The panel layout editor for that panel appears.

11. From the File menu, select Import....

The Open window appears.

12. From the Location list and files displayed in the Files window, locate the
modified file you want to import. Use the File Type filter if necessary.

When a suitable file is selected, its name appears in the File Name field.

13. Click Open.

The code populates the panel. All information is visible in the panel layout
editor.

14. From the File menu, select Save and then Exit.

The panel text is saved and the panel layout editor window closes.

15. After any other desired changes in the Panel Properties window, click OK to
save your work and close the window.

Note: The Script Author expects a file extension of .HTML. If you
provide a file extension of .HTM, you may need to adjust the File
Type filter to recognize the file when you attempt to re-import it.

Procedures for Customizing Panel Layouts

Customizing Panel Layouts 6-21

The canvas appears.

16. From the File menu, select Save.

Guidelines
■ Oracle Applications 11i-certified Web browsers such as Netscape Navigator and

Microsoft Internet Explorer interpret JavaScript differently. This is traditionally
an area of concern for Web developers. Issues with compatibility of custom
JavaScript are generally a Web browser issue. As with all custom code, such
issues are not supported by Oracle Corporation.

■ Panels with JavaScript must either be created or edited outside of the Script
Author and imported as panel text prior to compiling and deploying the script.

■ Many custom JavaScripts are required to be included within the <HEAD> and
</HEAD> tags of any HTML page.

■ Microsoft FrontPage does not allow the inclusion of any content after the
</HTML> tag. When editing panel text containing any embedded values,
ensure that the HTML editor has not removed embedded value codes. One
workaround is to create embedded values after otherwise customizing panel
layout content.

Procedures for Customizing Panel Layouts

6-22 Oracle Scripting Developer’s Guide

Oracle Scripting Glossary-1

Oracle Scripting Glossary

action

A Script Author command that executes at runtime upon evaluation of the object
containing the action. Actions can be associated with branches, or with blocks if
designated as an API block. See also pre-action and post-action.

argument

Data provided to a function or method for use in its calculations and processing.
Arguments are passed to the function or method by listing them in parentheses in
the function or method name. In a Java method, these are also called parameters.

best practice Java method

Oracle Applications includes Java methods written specifically for Oracle Scripting
to quickly enable frequently requested script runtime functionality. Class files
containing these "best practice" Java methods are included in APPS.ZIP, each in the
package oracle.apps.ies.bestpractice.<Class Name>.

best practice survey

Oracle Corporation provides some pre-built survey questionnaire scripts flows to
serve as examples of how to customize scripts specifically intended for use as
survey questionnaires. Aspects of these scripts can also be used in scripts to be
executed in the agent interface. Best practice survey scripts are placed on the 11i
APPL_TOP in the directory $IES_TOP/scripts during installation or patching of
Oracle Scripting. These are provided on an as-is basis. Use of best practice surveys
requires customization and is not supported.

Oracle Scripting Glossary-2

blackboard

Virtual memory space in Oracle Scripting where information is stored in key/value
pairs. This information is only retained for the duration of a single Scripting
interaction.

building block

A building block is a portion of a Script Author script that contains functionality
integrating with other Oracle Applications. Building blocks typically contain one or
more API and typically perform a task-based operation such as creating a service
request, registering for an event, and so forth. Building blocks are not intended to be
used as stand-alone scripts, but are expected to be imported into a script and
modified as appropriate. These are provided on an as-is basis. Use of building
blocks requires customization and is not supported.

campaign

A focused effort to achieve a particular goal from a targeted population over a
specific period of time for a particular business purpose.

class

A set of related objects that share common characteristics. In Java, a class contains a
set of methods.

CRM Resource Manager

Oracle CRM Resource Manager is a responsibility included with a Rapid Install of
Oracle CRM Applications so that HRMS person types (most often, employees)
required by Oracle products can be created. It does not have the full functionality of
HRMS. Note that if HRMS is installed, HRMS employees must be created using that
tool and cannot be created with CRM Resource Manager.

cycle

A cycle is a repeatable survey event, utilizing the same script. Multiple cycles will
also allow the same survey to be given through different media types, when
supported. Multiple cycles are typically used to measure the same characteristics at
a different moment in time.

deployment

An instance of a survey and cycle within a survey campaign; this refers to a single
instance or execution of a survey campaign; for list-based deployments this refers to
a specific set of lists and templates.

Oracle Scripting Glossary-3

deployment ID

An identification number for each deployment in a particular instance. This is
created upon setting a deployment to Active status. All respondents in a particular
deployment will have the same deployment ID.

dID

See deployment ID.

error Page

This survey resource is a JSP file (or pure HTML with a JSP file extension) that
displays as a full page any time an error results during survey participation (when a
respondent is taking a survey). For example, an error might occur if a resource is
unavailable, the script designated by the survey campaign information is not
loaded, or other unexpected conditions are encountered. This page may contain
graphics in GIF or JPEG format.

final Page

This survey resource is a JSP file (or pure HTML with a JSP file extension) that
displays after the last panel in the survey questionnaire has been viewed by the
survey respondent, It typically includes a thank-you message to the survey
respondent, and indicates to the survey respondent that the survey has ended
successfully. This page may contain graphics in GIF or JPEG format, and optionally
may contain a hypertext link, for example to the enterprise’s home page.

header Page

This survey resource is a JSP file (or pure HTML with a JSP file extension) that
displays at the top of each page throughout the survey session, except the Error and
Final pages). Just below the Header, the content placed in the panel layout editor for
that panel (if any) appears, followed by all answer definitions in the panel (each in
its own horizontal row). The Header Page often contains corporate logos or other
standardized graphics in GIF or JPEG format.

invitation

An e-mail message master document, inviting potential survey respondents to
participate in the survey. Each e-mail message contains a customized URL, from
which the invited list member can respond to the specified survey.

JTF

Java Technology Foundation, an Oracle proprietary technology stack.

Oracle Scripting Glossary-4

list

The list of potential survey respondents who will receive an invitation to participate
in the questionnaire. List members may also receive reminders to participate in a
survey, which includes the survey end date. Lists are built using Oracle Marketing’s
list management feature. Use of list-based surveys requires Oracle Marketing.

method

A task that can be performed with specific data items or properties. A Java method
can be a function (resulting in a return value) or a procedure.

Oracle HRMS

Oracle HRMS is a full-featured enterprise Human Resources Management System.
It is an ERP application using Oracle Forms technology to manage human resources
used by a variety of ERP and CRM applications.

PHP

Personal home page. Accessed when logging into Oracle Self Service applications,
the personal home page lists the responsibilities available to the logged in Oracle
Applications account for access to ERP applications and Forms-based CRM
applications. Responsibilities associated with access to CRM HTML-based
applications may not appear on the PHP.

post-action

A Script Author command that executes immediately following the evaluation of
the object with which the post-action is associated, and prior to evaluation of the
next object in the flow of the script. Post-actions can be associated with panels,
blocks, groups, or the global script. See also action and pre-action.

pre-action

A Script Author command that executes prior to the evaluation of the object with
which the pre-action is associated. Pre-actions can be associated with panels, blocks,
groups, or the global script. See also action and post-action.

reminder

An e-mail message master document, reminding potential survey respondents
(already invited to take a survey) of the appropriate URL to access to respond to the
survey. Reminders often include information such as the last day the recipient may
participate in the survey. Using the same master document, reminders can be sent
in a batch process on a predefined schedule, or can be sent manually for any
individual list member. For anonymous deployments, all list members will receive

Oracle Scripting Glossary-5

reminders. For non-anonymous deployments, only list members who have not yet
responded will receive reminders.

respondent

An individual responding to a request for information (in the form of participating
in a questionnaire). For list-based survey campaigns, respondents are list members
who responded to an e-mailed invitation to participate in the survey.

respondent ID

A unique identification number for each list-based respondent in a particular
instance. The URL for a list member includes as parameters both the deployment ID
common to all participants in a given deployment and each list member’s unique
respondent ID.

rID

See respondent ID.

sample

The population from which information is solicited by survey.

script

This file (built using the Script Author component of Oracle Scripting) contains the
business rules and text for the single script (for the agent interface) or survey
questionnaire (for the Web interface) employed by a given survey campaign.

script information area

The script information area is a programmable feature of the Script Author in which
script developers can place information that appears as a header in any script
executed in the Scripting Engine agent interface at runtime. The script information
area is a global script property and appears in every session of a script executed in
the agent interface when this information is defined. It is referred to in the Script
Author user interface as the Static Panel. You can access this area by selecting File >
Script Properties > Static Panel or by right-clicking on an empty area of the canvas
and selecting Edit Blob Properties > Static Panel.

static panel

See script information area.

Oracle Scripting Glossary-6

survey campaign

A survey campaign is the collection of requirements needed to execute a script in a
Web browser using the Scripting Engine Web interface. This is the super class that
references the global script. A survey campaign must have information for at least
one cycle and at least one deployment. Survey campaigns are created using the
Survey Administration console. As prerequisites to creating a survey campaign, you
must create and deploy from the Script Author the script containing questions and
answer choices, and you must define survey resources.

survey questionnaire

Set of questions built using the Script Author component of Oracle Scripting for
execution in the Scripting Engine as a survey questionnaire, typically to gather
feedback, obtain market data, tabulate opinion, measure satisfaction, or otherwise
collect data directly from specific (customers, employees, prospects) or non-specific
target populations.

survey resource

Survey resources are JSP-format files (or pure HTML files saved with a JSP file
extension) that provide functionality to a script executing in the Scripting Engine
Web interface. The header survey resource displays as the top portion of each
HTML page. The footer survey resource displays as the bottom portion of each
HTML page. The final page resource is displayed after a survey questionnaire or
script running in a Web browser has been completed. The error page resource is the
page that appears when an error condition occurs during script execution in a Web
browser. Self-service Web applications use different error page resources than
survey questionnaires. Survey resources are uploaded into the $OA_HTML
directory on the applications server and are served by the Web server as
appropriate.

survey respondent

See respondent.

SYSDATE

This refers to the current Systems Date of the database. When creating records in a
database the SYSDATE is typically time-stamped as creation date, and SYSDATE is
also used as a default setting for creating responsibilities from an Oracle
Applications perspective.

Oracle Scripting Glossary-7

template

Oracle One-to-One Fulfillment’s term for a group of master documents and any
collateral. Templates may also include campaign specifications. Templates are
identified with a survey campaign at the deployment level to identify invitation and
reminder master documents and their associated queries. Only required for
list-based survey campaigns. No collateral is typically associated with a survey
campaign.

uniform resource locator (URL)

A specific string of characters, including protocol identifier (such as HTTP or FTP),
that together forms the address to view or retrieve resources deployed on the
Internet.

Oracle Scripting Glossary-8

	Contents
	Send Us Your Comments
	Preface
	1 Understanding Script Author Commands
	1.1� Action Types and Commands
	1.1.1� Where Commands Are Defined in the Script Author
	1.1.2� Action Types

	1.2� Command Types
	1.2.1� Java Commands
	1.2.1.1� Referencing Java Methods in Script Author
	1.2.1.2� Referencing Best Practice Java Methods in Script Author
	1.2.1.3� Passing the Proxy Bean as a Parameter to a Java Command
	1.2.1.4� Standard Java Naming and Usage Conventions
	1.2.1.5� Importing Scripting Classes into Java Source Files

	1.2.2� PL/SQL Commands
	1.2.3� Blackboard Commands
	1.2.3.1� Providing Values to the Blackboard
	1.2.3.2� Uses of the Blackboard Command
	1.2.3.3� Maintaining State in the Scripting Blackboard
	1.2.3.4� How Long Is Blackboard Information Retained?
	1.2.3.5� Using Scripting APIs

	1.2.4� Forms Commands
	1.2.4.1� Oracle Scripting Forms APIs
	1.2.4.2� Getting a Value from Forms-Based Oracle applications
	1.2.4.3� Setting a Value in Forms-Based Applications
	1.2.4.4� Defining a Shortcut Button to Launch a Form
	1.2.4.5� Launching a Web Browser as a Script Action
	1.2.4.6� Calling APIs Customized for Use with Oracle Scripting
	1.2.4.6.1� Oracle TeleService
	1.2.4.6.2� Oracle TeleSales and Oracle Collections

	1.2.5� Constant Commands
	1.2.6� Delete Actions

	2 Customizing Oracle Scripting
	2.1� Customization and Support
	2.1.1� Formal and Informal Training
	2.1.2� Skill Sets and Experience Required for Oracle Scripting
	2.1.3� Using Best Practices and Building Blocks

	2.2� Determining Where to Define a Command
	2.3� Best Practice Java Methods
	2.3.1� Overview of Best Practice Java Methods
	2.3.2� Deciding Between Best Practice and Custom Java
	2.3.3� ScriptUtil Java Methods
	2.3.4� NodeDefault Java Methods
	2.3.5� NodeValidation Java Methods
	2.3.6� Referencing Best Practice Java in a Command

	2.4� Passing Parameters to the Web Interface
	2.5� Performing Advanced Graphical Script Tasks
	2.5.1� Defining a Shortcut Button
	2.5.1.1� Defining a Shortcut Button to Execute a Command
	2.5.1.2� Defining a Shortcut Button to Jump to a Group

	2.5.2� Defining Shortcuts
	2.5.3� Enabling the Agent Interface Disconnect Button
	2.5.4� Enabling or Disabling a Shortcut Button
	2.5.5� Defining the Script Information Area
	2.5.6� Defining a Constant Command
	2.5.7� Using the Indeterminate Branch
	2.5.8� Using Iterating Parameters
	2.5.8.1� Business Rules Governing Iterating Parameters
	2.5.8.2� Iterating Parameters in the Scripting Engine

	2.5.9� Querying the Database and Displaying the Results
	2.5.9.1� Displaying Returned Values as Panel Text
	2.5.9.2� Displaying Returned Values as Panel Answer Lookup Values
	2.5.9.3� Understanding the Scripting Cursor
	2.5.9.4� Scripting Engine Cursor APIs

	2.5.10� Replacing a Panel with a Java Bean

	3 Seeded Script Author Commands
	3.1� Support Statement
	3.2� Seeded Commands Overview
	3.3� Seeded Command Detail
	3.3.1� Create Lead
	3.3.2� Create Lead Opportunity
	3.3.3� Send Collateral
	3.3.4� Register for an Event
	3.3.5� Register Interest for Organization
	3.3.6� Register Interest for Contact
	3.3.7� Create Organization Contact
	3.3.8� Create Party Org Type
	3.3.9� Create Party Site
	3.3.10� Create Person Party
	3.3.11� Create Location
	3.3.12� Update Organization Contact
	3.3.13� Update Party Site

	4 Oracle Scripting Building Blocks
	4.1� Overview of Building Blocks
	4.1.1� Building Blocks Versus Seeded Reusable Commands
	4.1.2� General Structure of a Building Block Script
	4.1.3� Location of Building Block Scripts

	4.2� How to Use Building Blocks
	4.3� Summary Information on the Building Block Scripts
	4.4� The Retrieve Customer Building Block Script (iesrcust.scr)

	5 Best Practice Surveys
	5.1� Best Practice Survey Script Considerations
	5.2� Location of Best Practice Survey Scripts
	5.3� Description of Best Practice Survey Scripts

	6 Customizing Panel Layouts
	6.1� Purpose and Limitations of the Panel Layout Editor
	6.2� HTML Restrictions in the Scripting Engine
	6.2.1� Restrictions for Web and Agent Interfaces
	6.2.2� Web Interface Restrictions
	6.2.3� Agent Interface Restrictions

	6.3� Oracle Scripting Custom HTML Syntax
	6.3.1� Panel-Level HTML Requirements and Syntax
	6.3.2� Answer UI-Level HTML Requirements and Syntax
	6.3.2.1� Radio Button Answer UI Panel Syntax
	6.3.2.2� Checkbox Group Answer UI Panel Syntax
	6.3.2.3� Button Answer UI Panel Syntax
	6.3.2.4� Continue Button Panel Syntax
	6.3.2.5� Embedded Value Syntax in Panel Text

	6.4� Procedures for Customizing Panel Layouts
	6.4.1� Requirements for Answer Lookup Values
	6.4.2� Requirements for Panel Content
	6.4.3� Writing Panel Text Outside of the Script Author
	6.4.4� Exporting Panel Text, Adding JavaScript, and Importing

	Oracle Scripting Glossary

